Evaluation and validation of social and psychological markers in randomised trials of complex interventions in mental health: a methodological research programme

心理干预 临床试验 社会心理的 心理健康 因果推理 背景(考古学) 外部有效性 心理学 临床心理学 医学 精神科 社会心理学 古生物学 病理 生物
作者
Graham Dunn,Richard Emsley,Hanhua Liu,Sabine Landau,Jonathan Green,Ian R. White,Andrew Pickles
出处
期刊:Health Technology Assessment [National Institute for Health Research]
卷期号:19 (93): 1-116 被引量:128
标识
DOI:10.3310/hta19930
摘要

Background The development of the capability and capacity to evaluate the outcomes of trials of complex interventions is a key priority of the National Institute for Health Research (NIHR) and the Medical Research Council (MRC). The evaluation of complex treatment programmes for mental illness (e.g. cognitive–behavioural therapy for depression or psychosis) not only is a vital component of this research in its own right but also provides a well-established model for the evaluation of complex interventions in other clinical areas. In the context of efficacy and mechanism evaluation (EME) there is a particular need for robust methods for making valid causal inference in explanatory analyses of the mechanisms of treatment-induced change in clinical outcomes in randomised clinical trials. Objectives The key objective was to produce statistical methods to enable trial investigators to make valid causal inferences about the mechanisms of treatment-induced change in these clinical outcomes. The primary objective of this report is to disseminate this methodology, aiming specifically at trial practitioners. Methods The three components of the research were (1) the extension of instrumental variable (IV) methods to latent growth curve models and growth mixture models for repeated-measures data; (2) the development of designs and regression methods for parallel trials; and (3) the evaluation of the sensitivity/robustness of findings to the assumptions necessary for model identifiability. We illustrate our methods with applications from psychological and psychosocial intervention trials, keeping the technical details to a minimum, leaving the reporting of the more theoretical and mathematically demanding results for publication in appropriate specialist journals. Results We show how to estimate treatment effects and introduce methods for EME. We explain the use of IV methods and principal stratification to evaluate the role of putative treatment effect mediators and therapeutic process measures. These results are extended to the analysis of longitudinal data structures. We consider the design of EME trials. We focus on designs to create convincing IVs, bearing in mind assumptions needed to attain model identifiability. A key area of application that has become apparent during this work is the potential role of treatment moderators (predictive markers) in the evaluation of treatment effect mechanisms for personalised therapies (stratified medicine). We consider the role of targeted therapies and multiarm trials and the use of parallel trials to help elucidate the evaluation of mediators working in parallel. Conclusions In order to demonstrate both efficacy and mechanism, it is necessary to (1) demonstrate a treatment effect on the primary (clinical) outcome, (2) demonstrate a treatment effect on the putative mediator (mechanism) and (3) demonstrate a causal effect from the mediator to the outcome. Appropriate regression models should be applied for (3) or alternative IV procedures, which account for unmeasured confounding, provided that a valid instrument can be identified. Stratified medicine may provide a setting where such instruments can be designed into the trial. This work could be extended by considering improved trial designs, sample size considerations and measurement properties. Funding The project presents independent research funded under the MRC–NIHR Methodology Research Programme (grant reference G0900678).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助lemon采纳,获得10
1秒前
1秒前
yzh完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
核动力驴应助温柔的可愁采纳,获得10
3秒前
橘白完成签到,获得积分10
3秒前
3秒前
万能图书馆应助kingsley05采纳,获得10
3秒前
爆米花应助xldongcn采纳,获得10
3秒前
LZS发布了新的文献求助10
4秒前
X_X发布了新的文献求助10
4秒前
研友_nxV0x8完成签到 ,获得积分10
4秒前
斯文败类应助2953685951采纳,获得10
5秒前
CipherSage应助顺利的映萱采纳,获得10
5秒前
5秒前
小七发布了新的文献求助10
6秒前
111发布了新的文献求助10
6秒前
6秒前
王王发布了新的文献求助10
6秒前
学术蝗虫发布了新的文献求助10
7秒前
浅草完成签到,获得积分10
7秒前
哎哟大侠发布了新的文献求助10
7秒前
哈哈哈哈哈关注了科研通微信公众号
7秒前
7秒前
明年发布了新的文献求助10
7秒前
怡然的扬发布了新的文献求助10
7秒前
8秒前
8秒前
JL完成签到 ,获得积分10
8秒前
wp完成签到,获得积分10
9秒前
华仔应助友好的璎采纳,获得10
9秒前
靓丽续发布了新的文献求助10
9秒前
X_X完成签到,获得积分10
10秒前
小学生熊大完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342