衰减
脱水
发电机(电路理论)
水下
边距(机器学习)
计算机科学
散射
材料科学
光学
声学
地质学
物理
功率(物理)
机器学习
岩土工程
海洋学
量子力学
作者
Salma González-Sabbagh,Antonio Robles‐Kelly,Shang Gao
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2211.10026
摘要
Underwater images are usually covered with a blue-greenish colour cast, making them distorted, blurry or low in contrast. This phenomenon occurs due to the light attenuation given by the scattering and absorption in the water column. In this paper, we present an image enhancement approach for dewatering which employs a conditional generative adversarial network (cGAN) with two generators. Our Dual Generator Dewatering cGAN (DGD-cGAN) removes the haze and colour cast induced by the water column and restores the true colours of underwater scenes whereby the effects of various attenuation and scattering phenomena that occur in underwater images are tackled by the two generators. The first generator takes at input the underwater image and predicts the dewatered scene, while the second generator learns the underwater image formation process by implementing a custom loss function based upon the transmission and the veiling light components of the image formation model. Our experiments show that DGD-cGAN consistently delivers a margin of improvement as compared with the state-of-the-art methods on several widely available datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI