Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications

合理设计 纳米技术 过渡金属 极化(电化学) 材料科学 电子结构 设计要素和原则 自旋极化 催化作用 化学物理 电子 化学 计算机科学 计算化学 物理 物理化学 量子力学 软件工程 生物化学
作者
Viet‐Hung Do,Jong‐Min Lee
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (11): 17847-17890 被引量:188
标识
DOI:10.1021/acsnano.2c08919
摘要

Over the past few decades, development of electrocatalysts for energy applications has extensively transitioned from trial-and-error methodologies to more rational and directed designs at the atomic levels via either nanogeometric optimization or modulating electronic properties of active sites. Regarding the modulation of electronic properties, nonprecious transition metal-based materials have been attracting large interest due to the capability of versatile tuning d-electron configurations expressed through the flexible orbital occupancy and various possible degrees of spin polarization. Herein, recent advances in tailoring electronic properties of the transition-metal atoms for intrinsically enhanced electrocatalytic performances are reviewed. We start with discussions on how orbital occupancy and spin polarization can govern the essential atomic level processes, including the transport of electron charge and spin in bulk, reactive species adsorption on the catalytic surface, and the electron transfer between catalytic centers and adsorbed species as well as reaction mechanisms. Subsequently, different techniques currently adopted in tuning electronic structures are discussed with particular emphasis on theoretical rationale and recent practical achievements. We also highlight the promises of the recently established computational design approaches in developing electrocatalysts for energy applications. Lastly, the discussion is concluded with perspectives on current challenges and future opportunities. We hope this review will present the beauty of the structure-activity relationships in catalysis sciences and contribute to advance the rational development of electrocatalysts for energy conversion applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献互助发布了新的文献求助30
刚刚
可爱的函函应助Winnie采纳,获得50
刚刚
1秒前
bkagyin应助轻松玫瑰采纳,获得10
2秒前
erfc完成签到,获得积分10
2秒前
3秒前
Lucas应助霖lin采纳,获得10
3秒前
3秒前
4秒前
蛋挞完成签到,获得积分20
4秒前
愉快的秋尽完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
坚定的若枫完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
充电宝应助mizhou采纳,获得10
6秒前
科研通AI6应助大头采纳,获得10
6秒前
充电宝应助彩虹海采纳,获得10
6秒前
6秒前
7秒前
炙热一凤给33的求助进行了留言
8秒前
狂野语山发布了新的文献求助10
8秒前
斯文明杰发布了新的文献求助10
9秒前
科研通AI5应助凶狠的源智采纳,获得10
9秒前
科龙发布了新的文献求助10
10秒前
10秒前
科研圣体发布了新的文献求助10
10秒前
科研鱼关注了科研通微信公众号
11秒前
llls发布了新的文献求助10
11秒前
小的金鱼发布了新的文献求助10
11秒前
SciGPT应助贾克斯采纳,获得10
11秒前
JamesPei应助雪白盼山采纳,获得10
12秒前
CDX发布了新的文献求助10
13秒前
14秒前
Winnie发布了新的文献求助50
14秒前
跳跃毒娘发布了新的文献求助10
15秒前
赘婿应助Spike采纳,获得10
16秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079