已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Smart Traffic Monitoring Through Pyramid Pooling Vehicle Detection and Filter-Based Tracking on Aerial Images

计算机科学 卷积神经网络 交通拥挤 人工智能 无人机 计算机视觉 车辆跟踪系统 卡尔曼滤波器 实时计算 运输工程 工程类 生物 遗传学
作者
Adnan Ahmed Rafique,Amal Al‐Rasheed,Amel Ksibi,Manel Ayadi,Ahmad Jalal,Khaled Alnowaiser,Hossam Meshref,Mohammad Shorfuzzaman,Munkhjargal Gochoo,Jeongmin Park
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2993-3007 被引量:13
标识
DOI:10.1109/access.2023.3234281
摘要

Increased traffic density, combined with global population development, has resulted in increasingly congested roads, increased air pollution, and increased accidents. Globally, the overall number of automobiles has expanded dramatically during the last decade. Traffic monitoring in this environment is undoubtedly a significant difficulty in various developing countries. This work introduced a novel vehicle detection and classification system for smart traffic monitoring that uses a convolutional neural network (CNN) to segment aerial imagery. These segmented images are examined to further detect the vehicles by incorporating novel customized pyramid pooling. Then, these detected vehicles are classified into various subcategories. Finally, these vehicles are tracked via Kalman filter (KF) and kernelized filter-based techniques to cope with and manage massive traffic flows with minimal human intervention. During the experimental evaluation, our proposed system illustrated a remarkable vehicle detection rate of 95.78% over the Vehicle Aerial Imagery from a Drone (VAID), 95.18% over the Vehicle Detection in Aerial Imagery (VEDAI), and 93.13% over the German Aerospace Center (DLR) DLR3K datasets, respectively. The proposed system has a variety of applications, including identifying vehicles in traffic, sensing traffic congestion on a road, traffic density at intersections, detecting various types of vehicles, and providing a path for pedestrians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
YifanWang应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
DSFSD完成签到,获得积分10
3秒前
斯文败类应助ssk采纳,获得10
3秒前
3秒前
6秒前
6秒前
小小鱼完成签到 ,获得积分10
6秒前
zf2023发布了新的文献求助10
7秒前
time4323发布了新的文献求助10
9秒前
12秒前
13秒前
14秒前
SiDi完成签到,获得积分10
15秒前
缥缈飞鸟发布了新的文献求助30
19秒前
19秒前
Williams发布了新的文献求助10
20秒前
阿彪完成签到,获得积分20
21秒前
21秒前
22秒前
23秒前
钮南琴完成签到,获得积分10
24秒前
ZHH完成签到,获得积分10
24秒前
xyf发布了新的文献求助10
24秒前
绿琦完成签到,获得积分10
25秒前
爱吃巧克力的草莓完成签到 ,获得积分10
26秒前
阿彪发布了新的文献求助10
26秒前
二丙完成签到 ,获得积分10
26秒前
26秒前
27秒前
Phoenix发布了新的文献求助30
28秒前
CHND发布了新的文献求助10
28秒前
酷炫的远望完成签到,获得积分10
28秒前
MF完成签到,获得积分10
28秒前
29秒前
acihk发布了新的文献求助10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815420
求助须知:如何正确求助?哪些是违规求助? 3359189
关于积分的说明 10400678
捐赠科研通 3076839
什么是DOI,文献DOI怎么找? 1690041
邀请新用户注册赠送积分活动 813577
科研通“疑难数据库(出版商)”最低求助积分说明 767674