A novel approach to estimating urban land surface temperature by the combination of geographically weighted regression and deep neural network models

普通最小二乘法 土地覆盖 均方误差 人工神经网络 地理加权回归模型 回归 线性回归 回归分析 偏最小二乘回归 环境科学 城市热岛 统计 计算机科学 土地利用 计量经济学 地理 气象学 数学 机器学习 生态学 生物
作者
Siqi Jia,Yuhong Wang,Ling Chen,Xiaowen Bi
出处
期刊:urban climate [Elsevier BV]
卷期号:47: 101390-101390 被引量:13
标识
DOI:10.1016/j.uclim.2022.101390
摘要

Growing concerns on excessive urban heat call for better approaches to modeling urban thermal environment and developing effective mitigation strategies. A hybrid model integrating the geographically weighted regression (GWR) and deep neural network (DNN) was developed to estimate land surface temperature (LST). This model was compared with three other data-driven approaches to predicting LST, including the ordinary least squares (OLS) regression, GWR, and DNN. Sixteen satellite image datasets (a total of 155,728 data points) during a four-year period in Hong Kong were used for model development, validation, and comparison. The datasets cover two distinguishable geographical regions and consist of sixteen explanatory variables from five groups, including (1) land use and land cover (LULC) composition and surface characteristics, (2) LULC configuration, (3) urban form, (4) anthropogenic activities, and (5) location and local climate. The results indicate that the hybrid model performs the best in terms of model fitness and prediction accuracy, with R2 equal to 0.85 and 0.73 and the mean squared error (MSE) equal to 0.52 and 0.70 in the two regions, respectively. Compared to the OLS, DNN, and GWR models, the overall R2 for all the datasets of the hybrid model increases by 97.3%, 16.6%, and 6.9%, respectively. The promising result of the hybrid model is due to its ability to capture both spatial heterogeneity and address possible correlations between explanatory variables. Sensitivity of LST to various explanatory variables is also discussed and strategies to mitigate excessive heat are recommended. This study is anticipated to contribute to model development in urban LST estimation and quantitative evaluation of those factors driving LST variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的博涛完成签到,获得积分10
刚刚
猜不猜不完成签到 ,获得积分10
1秒前
2秒前
虎皮青椒完成签到,获得积分10
2秒前
长歌与行完成签到,获得积分10
3秒前
CodeCraft应助夏青荷采纳,获得10
4秒前
5秒前
庸人何必自扰完成签到,获得积分10
6秒前
lzl007完成签到 ,获得积分10
7秒前
jimmyhui发布了新的文献求助10
7秒前
DAI完成签到,获得积分10
8秒前
风趣采白完成签到,获得积分10
9秒前
Garrett完成签到 ,获得积分10
9秒前
Leo完成签到,获得积分10
10秒前
饱满的鑫完成签到,获得积分10
10秒前
木木发布了新的文献求助10
11秒前
11完成签到,获得积分10
12秒前
聪慧的石头完成签到,获得积分10
12秒前
lcxszsd完成签到 ,获得积分10
12秒前
细嗅蔷薇完成签到,获得积分10
13秒前
Snowy周完成签到,获得积分10
13秒前
14秒前
文鹏完成签到,获得积分10
14秒前
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
14秒前
orixero应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
15秒前
清脆晓曼完成签到,获得积分10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
温柔梦松完成签到 ,获得积分10
15秒前
16秒前
mazhihao完成签到 ,获得积分10
16秒前
翟大有完成签到 ,获得积分0
19秒前
19秒前
YB给YB的求助进行了留言
20秒前
20秒前
赵凤坤完成签到,获得积分10
20秒前
独立卫生间完成签到,获得积分10
20秒前
高分求助中
新中国出版事业的先驱胡愈之 1500
Essentials of Mental Health 800
Narcissistic Personality Disorder 700
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3853936
求助须知:如何正确求助?哪些是违规求助? 3396530
关于积分的说明 10597078
捐赠科研通 3118418
什么是DOI,文献DOI怎么找? 1718605
邀请新用户注册赠送积分活动 827657
科研通“疑难数据库(出版商)”最低求助积分说明 776947