已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SecureXGB: A Secure and Efficient Multi-party Protocol for Vertical Federated XGBoost

计算机科学 协议(科学) 计算机安全 计算机网络 互联网隐私 医学 替代医学 病理
作者
Zongda Han,Xiang Cheng,Wenhong Zhao,Jiaxin Fu,Zhaofeng He,Sen Su
标识
DOI:10.1145/3709723
摘要

Extreme Gradient Boosting (XGBoost) demonstrates excellent performance in practice and is widely used in both industry and academic research. This extensive application has led to a growing interest in employing multi-party data to develop more robust XGBoost models. In response to increasing concerns about privacy leakage, secure vertical federated XGBoost is proposed. It employs secure multi-party computation techniques, such as secret sharing (SS), to allow multiple parties holding vertically partitioned data, i.e., disjoint features on the same samples, to collaborate in constructing an XGBoost model. However, the running efficiency is the primary obstacle to the practical application of existing protocols, especially in multi-party settings. The reason is that these protocols not only require the execution of data-oblivious computations to protect intermediate results, leading to high computational complexity, but also involve a large number of SS-based non-linear operations with high overheads, e.g., division operations in gain score calculation and comparison operations in best split selection. To this end, we present a secure and efficient multi-party protocol for vertical federated XGBoost, called SecureXGB, which can perform the collaborative training of an XGBoost model in an SS-friendly manner. In SecureXGB, we first propose a parallelizable multi-party permutation method, which can secretly and efficiently permute all samples before model training to reduce the reliance on data-oblivious computations. Then, we design a linear gain score that can be evaluated without involving division operations and has equivalent utility to the original gain score. Finally, we develop a synchronous best split selection method to secretly identify the best split with the maximum gain score using a minimal number of comparison operations. Experimental results demonstrate that SecureXGB can achieve better training efficiency than state-of-the-art protocols without the loss of model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
joyemovie发布了新的文献求助10
1秒前
半口酥发布了新的文献求助20
3秒前
3秒前
4秒前
4秒前
Ale发布了新的文献求助10
4秒前
马马完成签到 ,获得积分10
5秒前
zyf完成签到,获得积分10
7秒前
JamesPei应助寒冷的尔芙采纳,获得10
8秒前
何丽雅发布了新的文献求助10
8秒前
浮游应助joyemovie采纳,获得10
9秒前
bmhs2017应助方囧采纳,获得10
9秒前
10秒前
Ale完成签到,获得积分10
12秒前
tututu发布了新的文献求助10
13秒前
qqq159753发布了新的文献求助10
14秒前
14秒前
15秒前
科研通AI6应助能干之卉采纳,获得10
17秒前
17秒前
汉堡包应助Zmy采纳,获得10
18秒前
顺心梦山完成签到,获得积分10
19秒前
光而不耀完成签到,获得积分10
19秒前
20秒前
jiuhua发布了新的文献求助10
20秒前
21秒前
22秒前
可爱的函函应助zhq采纳,获得10
23秒前
23秒前
24秒前
阔达的马里奥完成签到 ,获得积分10
24秒前
海棠完成签到 ,获得积分10
26秒前
刘窜疯发布了新的文献求助10
27秒前
苑开心完成签到,获得积分10
27秒前
28秒前
欣喜绮彤关注了科研通微信公众号
28秒前
司空靖琪完成签到,获得积分10
29秒前
29秒前
xin关注了科研通微信公众号
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394445
求助须知:如何正确求助?哪些是违规求助? 4515580
关于积分的说明 14054946
捐赠科研通 4426881
什么是DOI,文献DOI怎么找? 2431530
邀请新用户注册赠送积分活动 1423661
关于科研通互助平台的介绍 1402638