Design of highly potent anti-biofilm, antimicrobial peptides using explainable artificial intelligence

生物膜 抗菌剂 抗菌肽 化学 微生物学 计算生物学 生物 细菌 遗传学
作者
Karina Pikalyova,Tagir Akhmetshin,Alexey A. Orlov,Evan F. Haney,Noushin Akhoundsadegh,Jiaying You,Robert E. W. Hancock,Dragos Horvath,Gilles Marcou,Artem Cherkasov,Alexandre Varnek
标识
DOI:10.1101/2024.11.17.622654
摘要

Abstract Antimicrobial peptides have emerged as a potential alternative to traditional small molecule antibiotics. They possess broad-spectrum efficacy and increasingly confront the challenges of bacterial resistance, especially the adaptive resistance of biofilms. However, advanced rational peptide design methods are still required to ensure optimal property profiles of such peptides, while limiting the cost of their synthesis and screening. Here we present a computational pipeline for the rational de novo design of antimicrobial and anti-biofilm peptides based on an explainable artificial intelligence (XAI) framework. The developed framework combines a Wasserstein Autoencoder (WAE) and a non-linear dimensionality reduction method termed generative topographic mapping (GTM). The WAE was used to learn the latent representation of the peptide space, while the GTM guided the generation of novel AMPs through an illustrative depiction of the latent space in the form of 2D maps. The efficacy of the peptides generated with the developed pipeline was experimentally verified by synthesis and testing for activity against methicillin resistant Staphylococcus aureus (MRSA), achieving a 100% hit rate in targeting biofilms. Notably, the most potent anti-biofilm peptide developed in this study demonstrated almost one order of magnitude improvement in IC 50 value compared with the potent anti-biofilm peptide reference “1018”, used as a positive control. The developed pipeline is readily extendable for the optimization of additional peptide properties, including cytotoxicity, tendency to aggregate and proteolytic stability, underscoring its potential utility for rational design of the peptide-based therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
honting完成签到,获得积分10
1秒前
1秒前
CC关闭了CC文献求助
3秒前
乐乐应助weddcf采纳,获得10
3秒前
小张在努力完成签到,获得积分10
5秒前
三岁居居发布了新的文献求助10
5秒前
聪明完成签到 ,获得积分10
6秒前
zouzou完成签到,获得积分10
13秒前
13秒前
Freya应助xdy1990采纳,获得10
16秒前
17秒前
Zeal完成签到,获得积分10
19秒前
weddcf发布了新的文献求助10
19秒前
圈圈完成签到 ,获得积分10
20秒前
桐桐应助三岁居居采纳,获得10
21秒前
香蕉觅云应助他和她的猫采纳,获得10
22秒前
小马甲应助美丽的又菡采纳,获得10
23秒前
hello11发布了新的文献求助10
23秒前
27秒前
失眠的可乐完成签到,获得积分10
27秒前
TLB完成签到,获得积分10
28秒前
30秒前
30秒前
30秒前
英姑应助turbohero采纳,获得10
31秒前
科研通AI5应助蜗居采纳,获得10
31秒前
33秒前
34秒前
34秒前
xiaolan发布了新的文献求助10
37秒前
Hmzh完成签到,获得积分10
38秒前
39秒前
39秒前
56发布了新的文献求助10
40秒前
轻松初阳完成签到 ,获得积分10
40秒前
达蒙璃完成签到 ,获得积分0
41秒前
暗芒完成签到,获得积分10
41秒前
sheep完成签到,获得积分10
43秒前
蜗居发布了新的文献求助10
44秒前
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979