Identification of growth differentiation factor 15 as an early predictive biomarker for metabolic dysfunction‐associated steatohepatitis: A nested case–control study of UK Biobank proteomic data

医学 生命银行 GDF15型 脂肪性肝炎 生物标志物 脂肪变性 内科学 肿瘤科 疾病 生物信息学 脂肪肝 生物 生物化学
作者
Hao Wang,Xiaoqian Xu,Lichen Shi,Cheng Huang,Yameng Sun,Hong You,Jidong Jia,You‐Wen He,Yuanyuan Kong
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
标识
DOI:10.1111/dom.16233
摘要

Abstract Aims This study aims to determine the predictive capability for metabolic dysfunction‐associated steatohepatitis (MASH) long before its diagnosis by using six previously identified diagnostic biomarkers for metabolic dysfunction‐associated steatotic liver disease (MASLD) with proteomic data from the UK Biobank. Materials and Methods A nested case–control study comprising a MASH group and three age‐ and sex‐matched control groups (metabolic dysfunction‐associated steatosis, viral hepatitis and normal liver controls) was conducted. Olink proteomics, anthropometric and biochemical data at baseline levels were obtained from the UK Biobank. The baseline levels of CDCP1, FABP4, FGF21, GDF15, IL‐6 and THBS2 were analysed prospectively to determine their predictive accuracy for subsequent diagnosis with a mean lag time of over 10 years. Results At baseline, GDF15 demonstrated the best performance for predicting MASH occurrence at 5 and 10 years later, with AUCs of 0.90 at 5 years and 0.86 at 10 years. A predictive model based on four biomarkers (GDF15, FGF21, IL‐6 and THBS2) showed AUCs of 0.88 at both 5 and 10 years. Furthermore, a protein‐clinical model that included these four circulating protein biomarkers along with three clinical factors (BMI, ALT and TC) yielded AUCs of 0.92 at 5 years and 0.89 at 10 years. Conclusions GDF15 at baseline levels outperformed other individual circulating protein biomarkers for the early prediction of MASH. Our data suggest that GDF15 and the GDF15‐based model may be used as easy‐to‐implement tools to identify patients with high risks of developing MASH at a mean lag time of over 10 years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会有那么一天完成签到,获得积分10
1秒前
1秒前
臭小子发布了新的文献求助10
1秒前
hehehe85200完成签到,获得积分20
2秒前
大吴克发布了新的文献求助10
2秒前
付品聪发布了新的文献求助10
2秒前
文献荒完成签到,获得积分10
2秒前
夏杰完成签到,获得积分10
3秒前
李浩完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
不喝可乐发布了新的文献求助10
4秒前
乐观小之应助河河采纳,获得10
4秒前
Eris完成签到,获得积分10
4秒前
jjjjchou完成签到,获得积分10
5秒前
冰雪物语发布了新的文献求助10
5秒前
玩命的无施完成签到,获得积分10
6秒前
6秒前
QQ星完成签到,获得积分10
6秒前
归海觅双发布了新的文献求助10
6秒前
ydxhh完成签到,获得积分10
7秒前
斯文败类应助青岚采纳,获得10
7秒前
棍棍来也完成签到,获得积分10
7秒前
义气的咖啡豆完成签到,获得积分10
7秒前
希望天下0贩的0应助Tate采纳,获得10
8秒前
结实听莲完成签到,获得积分10
8秒前
Harry发布了新的文献求助10
8秒前
蛋蛋安安发布了新的文献求助10
9秒前
小苏打完成签到,获得积分10
9秒前
yvye完成签到 ,获得积分10
9秒前
臭小子完成签到,获得积分10
9秒前
小萝卜完成签到,获得积分10
9秒前
9秒前
10秒前
刘洪均完成签到,获得积分10
10秒前
衞凌完成签到,获得积分10
10秒前
彭于晏应助过儿采纳,获得10
10秒前
11秒前
Sandy完成签到,获得积分10
11秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376729
关于积分的说明 10494684
捐赠科研通 3096157
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820213
科研通“疑难数据库(出版商)”最低求助积分说明 771893