Predictive modelling and identification of critical variables of mortality risk in COVID-19 patients

2019年冠状病毒病(COVID-19) 2019-20冠状病毒爆发 鉴定(生物学) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算机科学 医学 病毒学 生物 内科学 疾病 爆发 生态学 传染病(医学专业)
作者
Olawande Daramola,Tatenda Duncan Kavu,Maritha J. Kotze,Jeanine L. Marnewick,Oluwafemi A. Sarumi,Boniface Kabaso,Thomas Moser,Karl A. Stroetmann,Isaac Fwemba,Fisayo Daramola,Martha Nyirenda,Susan J. van Rensburg,Peter Nyasulu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-023-46712-w
摘要

Abstract South Africa was the most affected country in Africa by the coronavirus disease 2019 (COVID-19) pandemic, where over 4 million confirmed cases of COVID-19 and over 102,000 deaths have been recorded since 2019. Aside from clinical methods, artificial intelligence (AI)-based solutions such as machine learning (ML) models have been employed in treating COVID-19 cases. However, limited application of AI for COVID-19 in Africa has been reported in the literature. This study aimed to investigate the performance and interpretability of several ML algorithms, including deep multilayer perceptron (Deep MLP), support vector machine (SVM) and Extreme gradient boosting trees (XGBoost) for predicting COVID-19 mortality risk with an emphasis on the effect of cross-validation (CV) and principal component analysis (PCA) on the results. For this purpose, a dataset with 154 features from 490 COVID-19 patients admitted into the intensive care unit (ICU) of Tygerberg Hospital in Cape Town, South Africa, during the first wave of COVID-19 in 2020 was retrospectively analysed. Our results show that Deep MLP had the best overall performance (F1 = 0.92; area under the curve (AUC) = 0.94) when CV and the synthetic minority oversampling technique (SMOTE) were applied without PCA. By using the Shapley Additive exPlanations (SHAP) model to interpret the mortality risk predictions, we identified the Length of stay (LOS) in the hospital, LOS in the ICU, Time to ICU from admission, days discharged alive or death, D-dimer (blood clotting factor), and blood pH as the six most critical variables for mortality risk prediction. Also, Age at admission, Pf ratio (PaO2/FiO2 ratio), troponin T (TropT), ferritin, ventilation, C-reactive protein (CRP), and symptoms of acute respiratory distress syndrome (ARDS) were associated with the severity and fatality of COVID-19 cases. The study reveals how ML could assist medical practitioners in making informed decisions on handling critically ill COVID-19 patients with comorbidities. It also offers insight into the combined effect of CV, PCA, and SMOTE on the performance of ML models for COVID-19 mortality risk prediction, which has been little explored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平凡世界完成签到 ,获得积分10
2秒前
mzrrong完成签到 ,获得积分10
2秒前
zhang完成签到 ,获得积分10
3秒前
3秒前
青黛完成签到 ,获得积分10
3秒前
hyd1640完成签到,获得积分10
5秒前
mengmenglv完成签到 ,获得积分0
6秒前
9秒前
Ryan完成签到,获得积分0
9秒前
大好人完成签到 ,获得积分10
10秒前
dejavu完成签到,获得积分10
10秒前
onevip完成签到,获得积分0
12秒前
13秒前
谨慎思柔发布了新的文献求助10
15秒前
张张完成签到 ,获得积分10
16秒前
自信的访云完成签到,获得积分10
19秒前
小粒橙完成签到 ,获得积分10
26秒前
发发完成签到,获得积分10
27秒前
28秒前
执着的以筠完成签到 ,获得积分10
31秒前
激动的xx完成签到 ,获得积分10
32秒前
Orange应助谨慎思柔采纳,获得10
37秒前
重回地球完成签到,获得积分10
38秒前
ARIA完成签到 ,获得积分10
38秒前
天天快乐应助独孤磕盐采纳,获得10
38秒前
40秒前
微笑的小霸王完成签到,获得积分10
40秒前
nkuhao完成签到,获得积分10
45秒前
独孤磕盐完成签到,获得积分20
47秒前
49秒前
49秒前
爆米花应助科研通管家采纳,获得20
49秒前
独孤磕盐发布了新的文献求助10
53秒前
gao完成签到 ,获得积分10
54秒前
陈少华完成签到 ,获得积分10
54秒前
高高从霜完成签到 ,获得积分10
56秒前
XDF完成签到 ,获得积分10
56秒前
愉快的小蘑菇完成签到,获得积分10
1分钟前
yyy完成签到 ,获得积分10
1分钟前
青檬完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315228
求助须知:如何正确求助?哪些是违规求助? 4457895
关于积分的说明 13868427
捐赠科研通 4347429
什么是DOI,文献DOI怎么找? 2387784
邀请新用户注册赠送积分活动 1381894
关于科研通互助平台的介绍 1351159