Data Learning Based SoH Estimation Supported by Modified Charging Algorithm for Electric Vehicle Applications

健康状况 电池(电) 电动汽车 荷电状态 计算机科学 算法 功率(物理) 工程类 物理 量子力学
作者
Shiv Pratap Singh Rajawat,Lokesh Soni,Kartik Badiger,Karan Sankla
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-28-0222
摘要

<div class="section abstract"><div class="htmlview paragraph">As the demand for electric vehicles continues to surge, ensuring the longevity and efficiency of EV batteries becomes critical. The state of health (SoH) of these batteries serves as a critical metric, influenced by various factors such as State of Energy (SoE) and State of Power (SoP). Understanding the dynamics of EV battery health is essential for optimising performance and extending lifespan. The impedance values of battery cells (R and C values) serve as fundamental parameters influencing SoE and SoP, inevitably degrading over time due to factors such as usage at varying C-rates, temperature fluctuations, and the number of charge cycles.</div><div class="htmlview paragraph">This paper introduces an innovative approach for estimating the State of Health (SoH) of a battery. The charging algorithm is tailored to support the SoH algorithm, with modifications enabling the estimation of R &amp; C parameters periodically throughout charging cycles, across a range of State of Charge (SoC) levels and various temperatures. These R &amp; C parameters are utilised in a data learning-based SoH algorithm deployed on the cloud to determine the battery's SoH. This work on the SoH algorithm and modified charging algorithm is developed in the Matlab/Simulink environment and subsequently tested on a real vehicle. This provides us with much more accurate SoH predictions, which can in turn be used to modify various algorithms affected by battery health.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DODO完成签到,获得积分10
刚刚
1秒前
ayan发布了新的文献求助10
1秒前
祝遥完成签到,获得积分10
1秒前
2秒前
12366666发布了新的文献求助10
2秒前
whatever举报求助违规成功
2秒前
残幻举报求助违规成功
2秒前
mmyhn举报求助违规成功
2秒前
2秒前
2秒前
mimi发布了新的文献求助30
3秒前
3秒前
研友_VZG7GZ应助kidult采纳,获得10
3秒前
3秒前
赘婿应助NNN采纳,获得10
3秒前
qujie完成签到,获得积分10
4秒前
4秒前
未了完成签到,获得积分10
4秒前
justin完成签到,获得积分10
5秒前
6秒前
深情寒松完成签到,获得积分10
6秒前
mimi完成签到 ,获得积分10
6秒前
迷你的无声完成签到,获得积分10
6秒前
可靠的雁山完成签到,获得积分20
6秒前
Daisy完成签到,获得积分20
7秒前
7秒前
8秒前
现实的涵柏完成签到,获得积分10
8秒前
田様应助未了采纳,获得10
8秒前
Alicante发布了新的文献求助10
9秒前
ayan完成签到,获得积分10
9秒前
超锅发布了新的文献求助10
9秒前
bc应助Ryan采纳,获得20
9秒前
chen发布了新的文献求助10
9秒前
宝福X暴富发布了新的文献求助10
9秒前
西瓜腾完成签到 ,获得积分10
10秒前
豆沙包完成签到,获得积分10
10秒前
12秒前
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871