Two-stage adaptive differential evolution with dynamic dual-populations for multimodal multi-objective optimization with local Pareto solutions

差异进化 人口 全局优化 数学优化 局部搜索(优化) 选择(遗传算法) 帕累托原理 计算机科学 局部最优 多目标优化 进化算法 数学 人工智能 社会学 人口学
作者
Guoqing Li,Wanliang Wang,Caitong Yue,Weiwei Zhang,Yirui Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:644: 119271-119271 被引量:10
标识
DOI:10.1016/j.ins.2023.119271
摘要

Several distinctive Pareto Sets (PSs) with an identical Pareto Front (PF) and local PSs with acceptable quality are comprised in multimodal multi-objective optimization problems (MMOPs). Recently, many multimodal multi-objective evolutionary algorithms (MMEAs) have been proposed. However, even though most of MMEAs have the ability to discover equivalent global PSs, these methods encounter failures in developing local PSs. The main reasons are that local PSs are dominated by global PSs and are removed from the population during the evolutionary process. To tackle this matter, a two-stage adaptive differential evolution with a dynamic dual-populations strategy, termed TADE_DDS, is developed. In TADE_DDS, a dynamic population strategy is put forward to divide the population into a global population that locates equivalent global PSs and a local population that aims to locate local PSs. Subsequently, the whole procedure is completed by two evolutionary stages associated with a dynamic population strategy, and an adaptive differential evolution algorithm is adopted for both global and local populations. The first-stage evolution aims to find more favorable local PSs and the second-stage evolution concentrates on finding a variety of global PSs. Additionally, a local environmental selection and a global environmental selection are performed for developing the diversity of local PSs and improving the convergence of global PSs and local PSs, respectively. TADE_DDS and several popular MMEAs are implemented on standard test problems. Experimental results demonstrate that TADE_DDS is equipped to locate both global and local PSs, and is superior to its competing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助99采纳,获得10
1秒前
等乙天发布了新的文献求助10
2秒前
ding应助羽墨空空采纳,获得10
4秒前
4秒前
5秒前
jy发布了新的文献求助10
6秒前
8秒前
99发布了新的文献求助10
9秒前
ref:rain完成签到,获得积分10
10秒前
hujiafeng发布了新的文献求助10
11秒前
bias完成签到,获得积分10
13秒前
慕青应助火星上的亦寒采纳,获得10
15秒前
17秒前
20秒前
21秒前
23秒前
23秒前
景景好发布了新的文献求助10
25秒前
nature发布了新的文献求助10
25秒前
慕青应助刘不动采纳,获得10
25秒前
27秒前
28秒前
28秒前
温柔的迎荷完成签到,获得积分10
28秒前
pedslee发布了新的文献求助10
29秒前
un发布了新的文献求助10
32秒前
木头人应助ZQ采纳,获得20
32秒前
33秒前
科研通AI2S应助执着的冰蓝采纳,获得10
33秒前
华仔应助宏hong采纳,获得30
35秒前
火星上的亦寒完成签到,获得积分10
35秒前
35秒前
37秒前
Akim应助pedslee采纳,获得10
38秒前
tang发布了新的文献求助10
38秒前
星星发布了新的文献求助10
39秒前
nature完成签到,获得积分10
39秒前
小二郎应助宋宋采纳,获得10
41秒前
橙子皮发布了新的文献求助10
41秒前
今后应助柠檬味的水采纳,获得10
41秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830132
求助须知:如何正确求助?哪些是违规求助? 3372665
关于积分的说明 10473778
捐赠科研通 3092220
什么是DOI,文献DOI怎么找? 1702017
邀请新用户注册赠送积分活动 818688
科研通“疑难数据库(出版商)”最低求助积分说明 771047