CrackDenseLinkNet: a deep convolutional neural network for semantic segmentation of cracks on concrete surface images

增采样 卷积神经网络 计算机科学 编码器 基本事实 分割 编码(集合论) 人工智能 深度学习 收缩率 模式识别(心理学) 图像(数学) 机器学习 操作系统 集合(抽象数据类型) 程序设计语言
作者
P. Manjunatha,Sami F. Masri,Aiichiro Nakano,L. Carter Wellford
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (2): 796-817 被引量:8
标识
DOI:10.1177/14759217231173305
摘要

Cracks are the defects formed by cyclic loading, fatigue, shrinkage, creep, and so on. In addition, they represent the deterioration of the structures over some time. Therefore, it is essential to detect and classify them according to the condition grade at the early stages to prevent the collapse of structures. Deep learning-based semantic segmentation convolutional neural network (CNN) has millions of learnable parameters. However, depending on the complexity of the CNN, it takes hours to days to train the network fully. In this study, an encoder network DenseNet and modified LinkNet with five upsampling blocks were used as a decoder network. The proposed network is referred to as the “CrackDenseLinkNet” in this work. CrackDenseLinkNet has 19.15 million trainable parameters, although the input image size is 512 × 512 and has a deeper encoder. CrackDenseLinkNet and four other state-of-the-art (SOTA) methods were evaluated on three public and one private datasets. The proposed CNN, CrackDenseLinkNet, outperformed the best SOTA method, CrackSegNet, by 2.2% of F1-score on average across the four datasets. Lastly, a crack profile analysis demonstrated that the CrackDenseLinkNet has lesser variance in relative errors for the crack width, length, and area categories against the ground-truth data. The code and datasets can be downloaded at https://github.com/preethamam/CrackDenseLinkNet-DeepLearning-CrackSegmentation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccl发布了新的文献求助10
刚刚
犹豫勇完成签到,获得积分10
刚刚
一恒发布了新的文献求助10
1秒前
龙小天发布了新的文献求助10
1秒前
2秒前
鸡吃米完成签到,获得积分10
2秒前
2秒前
泥花完成签到,获得积分10
2秒前
哎哟伟完成签到,获得积分10
2秒前
2秒前
jiangcy完成签到,获得积分10
2秒前
MM发布了新的文献求助10
2秒前
动漫大师发布了新的文献求助20
3秒前
海阔天空完成签到,获得积分10
3秒前
小马甲应助和和采纳,获得10
4秒前
研友_VZG7GZ应助三岁居居采纳,获得10
4秒前
4秒前
大模型应助Agoni采纳,获得10
4秒前
4秒前
落忆完成签到 ,获得积分10
5秒前
Ava应助结实断缘采纳,获得10
5秒前
SciGPT应助哎呀采纳,获得10
6秒前
orixero应助chichenglin采纳,获得10
6秒前
7秒前
ZH完成签到 ,获得积分10
7秒前
san行完成签到,获得积分10
7秒前
阳仔完成签到 ,获得积分10
7秒前
777发布了新的文献求助10
8秒前
8秒前
Owen应助海阔天空采纳,获得10
8秒前
悦耳的真完成签到,获得积分10
8秒前
一恒完成签到,获得积分10
9秒前
完美世界应助阿湫采纳,获得30
9秒前
9秒前
jack发布了新的文献求助10
9秒前
ganzhongxin完成签到,获得积分10
9秒前
苏A尔发布了新的文献求助20
9秒前
san行发布了新的文献求助10
9秒前
毅虹发布了新的文献求助30
10秒前
猪大壮完成签到,获得积分20
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621