已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

P2Sharpen: A progressive pansharpening network with deep spectral transformation

计算机科学 全色胶片 人工智能 转化(遗传学) 锐化 图像分辨率 模式识别(心理学) 一致性(知识库) 基本事实 计算机视觉 生物化学 基因 化学
作者
Hao Zhang,Hebaixu Wang,Xin Tian,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 103-122 被引量:38
标识
DOI:10.1016/j.inffus.2022.10.010
摘要

Most existing deep learning-based methods for pansharpening task solely rely on the supervision of pseudo-ground-truth multi-spectral images, which exhibits two limitations in producing high-quality images. On the one hand, it is uncontrollable to regulate the full-resolution performance due to the fact that their whole training process only remain at the scale of reduced resolution. On the other hand, they ignore the accurate spatial information reference of high-resolution panchromatic images for supervision, resulting in insufficient spatial structure details. To address these challenges, we propose a progressive pansharpening network with deep spectral transformation, termed as P2Sharpen, where we balance the performance in different resolutions and make full use of the observed satellite data to improve the quality of fused results. First, we design a spectral transformation network (STNet) to cross the modality difference between multi-spectral data and panchromatic data, which establishes an accurate mapping function from MS to PAN images. Second, we propose a progressive pansharpening network (P2Net), in which the optimization of pansharpening at reduced and full resolutions is considered in a two-stage manner, balancing the performance at two scales effectively. In addition, we introduce the trained STNet to construct the consistency constraint between the sharpened result and PAN image at both reduced-resolution stage and full-resolution stage, which further improves the ability of P2Net for preserving spatial textures. Extensive experiments demonstrate that our method shows excellent performance over the state-of-the-arts on the sharpening quality and the spectral response consistency in both reduced and full resolutions. Moreover, the proposed method can be applied to generate the high-resolution normalized difference vegetation index with promising accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
婼汐完成签到 ,获得积分10
3秒前
qian发布了新的文献求助10
5秒前
~静发布了新的文献求助20
5秒前
春山完成签到 ,获得积分10
6秒前
谦让映菡发布了新的文献求助10
6秒前
山茶花白玫瑰完成签到 ,获得积分10
9秒前
9秒前
10秒前
yanglinhai完成签到 ,获得积分10
11秒前
luxiaoyu发布了新的文献求助10
12秒前
慕青应助精明的尔蓝采纳,获得10
12秒前
13秒前
14秒前
muyu发布了新的文献求助10
17秒前
cryjslong完成签到,获得积分10
22秒前
俊逸沛菡完成签到 ,获得积分10
23秒前
23秒前
23秒前
25秒前
26秒前
鳄鱼不做饿梦完成签到,获得积分10
26秒前
Cissy发布了新的文献求助10
27秒前
小白加油完成签到 ,获得积分10
29秒前
LUCKY发布了新的文献求助10
30秒前
Cpp完成签到 ,获得积分10
31秒前
Ammr完成签到 ,获得积分10
33秒前
34秒前
35秒前
36秒前
38秒前
李健的粉丝团团长应助muyu采纳,获得10
38秒前
小廷发布了新的文献求助10
39秒前
ninioo发布了新的文献求助10
40秒前
ttt发布了新的文献求助10
41秒前
43秒前
洵洵发布了新的文献求助10
43秒前
天尽头发布了新的文献求助10
44秒前
小蘑菇应助帅气的夏天采纳,获得10
45秒前
Akim应助123123123采纳,获得30
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4552510
求助须知:如何正确求助?哪些是违规求助? 3981779
关于积分的说明 12327604
捐赠科研通 3651430
什么是DOI,文献DOI怎么找? 2011147
邀请新用户注册赠送积分活动 1046210
科研通“疑难数据库(出版商)”最低求助积分说明 934787