CFD INVESTIGATION OF TWO-PHASE FLOW ELECTROHYDRODYNAMIC ATOMIZATION OF THE TAYLOR CONE AND LIQUID JET PRIMARY BREAKUP USING THE VOLUME OF FLUID METHOD

电流体力学 分手 机械 表面张力 喷嘴 流体体积法 电场 材料科学 喷射(流体) 韦伯数 雷诺数 物理 热力学 量子力学 湍流
作者
Saeed Kheirati Ronizi,Reza Kamali,Dariush Mehboodi,Sina Amini Akbarabadi
出处
期刊:Atomization and Sprays [Begell House]
卷期号:32 (12): 21-50 被引量:1
标识
DOI:10.1615/atomizspr.2022043791
摘要

Electrohydrodynamic atomization or electrospray is a multiphase and multiphysics fluid flow. Uniform distribution of generated droplets after the liquid jet's primary breakup, generation of finer droplets, and more control over determining the droplets' size in the primary breakup are its advantages. By considering the electric field-flow rate diagram, which is called the stability island, the volume of fluid method and the continuous surface force model were used to capture the interface and calculate the surface tension force of the Taylor cone, respectively. This study is simulated in OpenFOAM by applying the different electric potentials, various nozzle-collector distances, and different liquid flow rates. The results reveal that increasing the electric potential strength and reducing the nozzle-collector distance lead to more electrical stresses caused by the electric potential gradient on the interface. Surface tension force, gravity, electric polarization stress, viscosity stress, normal electric stress, and tangential electric stress applied to the liquid lead to forming the Taylor cone. Therefore, the liquid is pushed towards the apex of the Taylor cone, the velocity increases near the cone's tip, a liquid jet with a smaller diameter is formed, and the liquid jet is broken into droplets. Raising the Reynolds and Weber numbers increases the polarization force and reduces the surface tension force of the liquid-air interface. Finally, by comparing the changes of the surface tension force applied to the interface at each step of increasing Re and We, we predict that it will behave independently for numbers greater than Re=88 and We=1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王提发布了新的文献求助10
2秒前
安静的卿发布了新的文献求助10
2秒前
4秒前
IcelikeNOZOMI完成签到,获得积分10
4秒前
大虾发布了新的文献求助10
5秒前
科研通AI5应助magiczhu采纳,获得20
6秒前
8秒前
领导范儿应助xxl采纳,获得10
10秒前
羌活发布了新的文献求助60
10秒前
书生发布了新的文献求助10
12秒前
xliang233完成签到 ,获得积分10
13秒前
14秒前
科研通AI5应助yjj6809采纳,获得10
16秒前
16秒前
16秒前
科研通AI5应助贤惠的平萱采纳,获得30
17秒前
17秒前
眼睛大的白容完成签到,获得积分10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
猪猪hero应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
19秒前
英姑应助科研通管家采纳,获得10
20秒前
20秒前
mao应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
逆流的鱼发布了新的文献求助10
21秒前
书生发布了新的文献求助10
21秒前
23秒前
23秒前
24秒前
海猫食堂发布了新的文献求助10
24秒前
HDD发布了新的文献求助10
25秒前
xiaoqian发布了新的文献求助10
26秒前
左凝珍发布了新的文献求助10
27秒前
积极的帽子完成签到 ,获得积分10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Crystalline Electric Field and Structural Effects in f-Electron Systems 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
【求助文献,并非书籍】Perovskite solar cells 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837121
求助须知:如何正确求助?哪些是违规求助? 3379323
关于积分的说明 10508579
捐赠科研通 3099052
什么是DOI,文献DOI怎么找? 1706758
邀请新用户注册赠送积分活动 821261
科研通“疑难数据库(出版商)”最低求助积分说明 772487