CFD INVESTIGATION OF TWO-PHASE FLOW ELECTROHYDRODYNAMIC ATOMIZATION OF THE TAYLOR CONE AND LIQUID JET PRIMARY BREAKUP USING THE VOLUME OF FLUID METHOD

电流体力学 分手 机械 表面张力 喷嘴 流体体积法 电场 材料科学 喷射(流体) 韦伯数 雷诺数 物理 热力学 量子力学 湍流
作者
Saeed Kheirati Ronizi,Reza Kamali,Dariush Mehboodi,Sina Amini Akbarabadi
出处
期刊:Atomization and Sprays [Begell House]
卷期号:32 (12): 21-50 被引量:1
标识
DOI:10.1615/atomizspr.2022043791
摘要

Electrohydrodynamic atomization or electrospray is a multiphase and multiphysics fluid flow. Uniform distribution of generated droplets after the liquid jet's primary breakup, generation of finer droplets, and more control over determining the droplets' size in the primary breakup are its advantages. By considering the electric field-flow rate diagram, which is called the stability island, the volume of fluid method and the continuous surface force model were used to capture the interface and calculate the surface tension force of the Taylor cone, respectively. This study is simulated in OpenFOAM by applying the different electric potentials, various nozzle-collector distances, and different liquid flow rates. The results reveal that increasing the electric potential strength and reducing the nozzle-collector distance lead to more electrical stresses caused by the electric potential gradient on the interface. Surface tension force, gravity, electric polarization stress, viscosity stress, normal electric stress, and tangential electric stress applied to the liquid lead to forming the Taylor cone. Therefore, the liquid is pushed towards the apex of the Taylor cone, the velocity increases near the cone's tip, a liquid jet with a smaller diameter is formed, and the liquid jet is broken into droplets. Raising the Reynolds and Weber numbers increases the polarization force and reduces the surface tension force of the liquid-air interface. Finally, by comparing the changes of the surface tension force applied to the interface at each step of increasing Re and We, we predict that it will behave independently for numbers greater than Re=88 and We=1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧的寄凡完成签到,获得积分10
刚刚
honghong发布了新的文献求助10
刚刚
gelinhao完成签到,获得积分0
1秒前
星河完成签到,获得积分10
1秒前
桐桐应助淡定映安采纳,获得10
1秒前
1秒前
1秒前
cm完成签到,获得积分10
2秒前
Akim应助xinL采纳,获得10
2秒前
爱听歌宝马完成签到 ,获得积分10
2秒前
淳于汲发布了新的文献求助10
2秒前
2秒前
2秒前
今后应助111采纳,获得10
2秒前
光芒万丈发布了新的文献求助10
3秒前
檬小洋完成签到,获得积分10
3秒前
顾矜应助cat采纳,获得10
3秒前
iceice完成签到,获得积分10
3秒前
6秒前
领导范儿应助ricky采纳,获得10
6秒前
满意饼干完成签到,获得积分10
6秒前
朱永杰发布了新的文献求助10
7秒前
隐形曼青应助a.........采纳,获得10
7秒前
peiyy完成签到,获得积分10
7秒前
8秒前
JamesPei应助浮世采纳,获得10
8秒前
积极乐观阳光开朗完成签到,获得积分10
8秒前
煜清清完成签到 ,获得积分10
8秒前
火星上书雁完成签到,获得积分10
9秒前
mawanyu发布了新的文献求助10
10秒前
yudandan@CJLU发布了新的文献求助10
10秒前
调皮雁桃发布了新的文献求助20
10秒前
11秒前
光芒万丈完成签到,获得积分10
11秒前
慕青应助xinL采纳,获得10
12秒前
丘比特应助iceice采纳,获得10
12秒前
科研通AI2S应助大胆绮兰采纳,获得10
12秒前
任性绾绾完成签到,获得积分10
13秒前
yunna_ning发布了新的文献求助10
13秒前
烟花应助Tuffyffy采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4818073
求助须知:如何正确求助?哪些是违规求助? 4127838
关于积分的说明 12774243
捐赠科研通 3867052
什么是DOI,文献DOI怎么找? 2128012
邀请新用户注册赠送积分活动 1148981
关于科研通互助平台的介绍 1044369