Federated learning based on Stackelberg game in unmanned-aerial-vehicle-enabled mobile edge computing

斯塔克伯格竞赛 计算机科学 GSM演进的增强数据速率 边缘计算 基站 激励 任务(项目管理) 计算机安全 计算机网络 人工智能 数学 数理经济学 经济 微观经济学 管理
作者
Chunlin Li,Mingyang Song,Youlong Luo
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:235: 121023-121023 被引量:16
标识
DOI:10.1016/j.eswa.2023.121023
摘要

Sudden medical safety accidents or large-scale outbreaks of epidemics will lead to a surge in traffic near hospitals and other medical infrastructure, and traditional edge base stations cannot cope with sudden traffic demands. In addition, the patient's data of health information is private, it is necessary to protect the patient's health information. Therefore, aiming at the practical problems that edge base stations cannot cope with a large number of communication requests and how to protect patients' private data under sudden medical safety accidents, this paper combines hierarchical federated learning with UAV-assisted mobile edge computing environment to build a UAV-assisted MEC system architecture for federated learning. However, federated learning is closely related to participating nodes. Without satisfactory rewards, users and UAVs will be unwilling to consume computing resources and communication resources to participate in federated learning. Therefore, this paper introduced the Stackelberg game and incentive mechanism into federated learning. The interaction between user devices, UAV, and the base station is modeled as a Stackelberg game to determine the maximum amount of data required for model training and the number of user devices and UAV. The incentive mechanism determines the task allocation and reward allocation of federated learning and determines the maximum benefits of three participants in the game process to improve the quality of user devices and the performance of the federated learning model. Experimental results show that the proposed algorithm can inspire user devices, which have high-quality data, to participate in federated learning training, improve training accuracy and maximize social welfare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别问我完成签到 ,获得积分20
刚刚
乐乐乐宝发布了新的文献求助10
1秒前
在水一方应助小猴采纳,获得10
1秒前
1233发布了新的文献求助10
1秒前
英姑应助鱼不鱼采纳,获得10
2秒前
xxxu完成签到,获得积分10
4秒前
又见白龙完成签到,获得积分10
4秒前
聪明汉堡发布了新的文献求助10
4秒前
李帆发布了新的文献求助20
4秒前
心内小白发布了新的文献求助10
4秒前
敏er好学发布了新的文献求助10
4秒前
漂亮凌旋完成签到,获得积分10
5秒前
7秒前
NexusExplorer应助SimonL采纳,获得10
7秒前
格子完成签到,获得积分10
8秒前
孤独士晋发布了新的文献求助10
8秒前
小骆驼完成签到,获得积分10
8秒前
星辰大海应助Yimi采纳,获得10
8秒前
8秒前
科研通AI2S应助别问我采纳,获得10
9秒前
Akim应助舒适路人采纳,获得10
9秒前
虚心柠檬完成签到 ,获得积分10
9秒前
上官若男应助落花生采纳,获得10
9秒前
科研通AI5应助404采纳,获得10
10秒前
晴晴完成签到,获得积分10
11秒前
12秒前
zxd1999完成签到,获得积分10
12秒前
12秒前
聪明汉堡完成签到,获得积分10
13秒前
13秒前
14秒前
大个应助123采纳,获得10
14秒前
科研通AI5应助lgbabe采纳,获得10
15秒前
15秒前
土豆完成签到,获得积分10
15秒前
泡泡糖发布了新的文献求助20
16秒前
16秒前
MYZ完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141