Federated learning based on Stackelberg game in unmanned-aerial-vehicle-enabled mobile edge computing

斯塔克伯格竞赛 计算机科学 GSM演进的增强数据速率 边缘计算 基站 激励 任务(项目管理) 计算机安全 计算机网络 人工智能 数学 数理经济学 经济 微观经济学 管理
作者
Chunlin Li,Mingyang Song,Youlong Luo
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:235: 121023-121023 被引量:16
标识
DOI:10.1016/j.eswa.2023.121023
摘要

Sudden medical safety accidents or large-scale outbreaks of epidemics will lead to a surge in traffic near hospitals and other medical infrastructure, and traditional edge base stations cannot cope with sudden traffic demands. In addition, the patient's data of health information is private, it is necessary to protect the patient's health information. Therefore, aiming at the practical problems that edge base stations cannot cope with a large number of communication requests and how to protect patients' private data under sudden medical safety accidents, this paper combines hierarchical federated learning with UAV-assisted mobile edge computing environment to build a UAV-assisted MEC system architecture for federated learning. However, federated learning is closely related to participating nodes. Without satisfactory rewards, users and UAVs will be unwilling to consume computing resources and communication resources to participate in federated learning. Therefore, this paper introduced the Stackelberg game and incentive mechanism into federated learning. The interaction between user devices, UAV, and the base station is modeled as a Stackelberg game to determine the maximum amount of data required for model training and the number of user devices and UAV. The incentive mechanism determines the task allocation and reward allocation of federated learning and determines the maximum benefits of three participants in the game process to improve the quality of user devices and the performance of the federated learning model. Experimental results show that the proposed algorithm can inspire user devices, which have high-quality data, to participate in federated learning training, improve training accuracy and maximize social welfare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日月完成签到 ,获得积分10
1秒前
YUN完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
小豆豆发布了新的文献求助10
2秒前
lxx发布了新的文献求助10
3秒前
梦成发布了新的文献求助10
4秒前
4秒前
4秒前
一八四完成签到,获得积分10
5秒前
flash发布了新的文献求助10
5秒前
朱瑶君完成签到,获得积分10
6秒前
8秒前
无聊完成签到,获得积分10
8秒前
思源应助gustavo采纳,获得10
9秒前
9秒前
9秒前
Tourist应助lxx采纳,获得10
10秒前
大模型应助张张张采纳,获得10
10秒前
科研通AI2S应助朱瑶君采纳,获得10
10秒前
xhd2814完成签到,获得积分20
11秒前
11秒前
zjm发布了新的文献求助30
11秒前
田様应助Zzh采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
华仔应助Adelinelili采纳,获得10
14秒前
慕青应助NNUsusan采纳,获得10
17秒前
18秒前
20秒前
21秒前
活力的曼波完成签到,获得积分10
21秒前
gustavo发布了新的文献求助10
21秒前
22秒前
壮观从云完成签到,获得积分10
23秒前
111完成签到,获得积分10
24秒前
hudaodao发布了新的文献求助10
24秒前
领导范儿应助巧语采纳,获得10
24秒前
MIKEY发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074673
求助须知:如何正确求助?哪些是违规求助? 4294686
关于积分的说明 13382020
捐赠科研通 4116171
什么是DOI,文献DOI怎么找? 2254166
邀请新用户注册赠送积分活动 1258719
关于科研通互助平台的介绍 1191640