P4-HLDMC: A Novel Framework for DDoS and ARP Attack Detection and Mitigation in SD-IoT Networks Using Machine Learning, Stateful P4, and Distributed Multi-Controller Architecture

有状态防火墙 计算机科学 服务拒绝攻击 软件定义的网络 可扩展性 OpenFlow 计算机网络 入侵检测系统 分布式计算 计算机安全 网络数据包 互联网 操作系统
作者
Walid I. Khedr,Ameer E. Gouda,Ehab R. Mohamed
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (16): 3552-3552 被引量:10
标识
DOI:10.3390/math11163552
摘要

Distributed Denial of Service (DDoS) and Address Resolution Protocol (ARP) attacks pose significant threats to the security of Software-Defined Internet of Things (SD-IoT) networks. The standard Software-Defined Networking (SDN) architecture faces challenges in effectively detecting, preventing, and mitigating these attacks due to its centralized control and limited intelligence. In this paper, we present P4-HLDMC, a novel collaborative secure framework that combines machine learning (ML), stateful P4, and a hierarchical logically distributed multi-controller architecture. P4-HLDMC overcomes the limitations of the standard SDN architecture, ensuring scalability, performance, and an efficient response to attacks. It comprises four modules: the multi-controller dedicated interface (MCDI) for real-time attack detection through a distributed alert channel (DAC), the MSMPF, a P4-enabled stateful multi-state matching pipeline function for analyzing IoT network traffic using nine state tables, the modified ensemble voting (MEV) algorithm with six classifiers for enhanced detection of anomalies in P4-extracted traffic patterns, and an attack mitigation process distributed among multiple controllers to effectively handle larger-scale attacks. We validate our framework using diverse test cases and real-world IoT network traffic datasets, demonstrating high detection rates, low false-alarm rates, low latency, and short detection times compared to existing methods. Our work introduces the first integrated framework combining ML, stateful P4, and SDN-based multi-controller architecture for DDoS and ARP detection in IoT networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大小发布了新的文献求助20
1秒前
pterionGao完成签到 ,获得积分10
2秒前
2秒前
2秒前
CipherSage应助高贵的妙之采纳,获得30
3秒前
3秒前
Susam发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
领导范儿应助sandy采纳,获得10
6秒前
erin发布了新的文献求助10
7秒前
8秒前
哎呀发布了新的文献求助10
9秒前
普萘洛尔发布了新的文献求助20
11秒前
二呆发布了新的文献求助30
11秒前
song完成签到,获得积分10
12秒前
橙子完成签到 ,获得积分10
13秒前
Orange应助襄阳采纳,获得10
13秒前
完美世界应助冬天该很好采纳,获得10
14秒前
15秒前
乐乐应助小巧晓夏采纳,获得10
16秒前
qweerrtt完成签到,获得积分10
18秒前
LYQ完成签到 ,获得积分10
21秒前
21秒前
二汀发布了新的文献求助10
21秒前
gu发布了新的文献求助10
21秒前
HL完成签到,获得积分10
23秒前
24秒前
二呆完成签到,获得积分10
26秒前
汉堡包应助qq采纳,获得10
26秒前
28秒前
28秒前
gu完成签到,获得积分10
29秒前
小马甲应助普萘洛尔采纳,获得10
29秒前
凡平完成签到,获得积分10
30秒前
30秒前
andy发布了新的文献求助10
31秒前
33秒前
wenyiboy完成签到,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783242
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10237018
捐赠科研通 3043689
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126