SCCAM: Supervised Contrastive Convolutional Attention Mechanism for Ante-Hoc Interpretable Fault Diagnosis With Limited Fault Samples

可解释性 计算机科学 卷积神经网络 人工智能 机器学习 断层(地质) 模式识别(心理学) 地震学 地质学
作者
Mengxuan Li,Peng Peng,Jingxin Zhang,Hongwei Wang,Weiming Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6194-6205 被引量:30
标识
DOI:10.1109/tnnls.2023.3313728
摘要

In real industrial processes, fault diagnosis methods are required to learn from limited fault samples since the procedures are mainly under normal conditions and the faults rarely occur. Although attention mechanisms have become increasingly popular for the task of fault diagnosis, the existing attention-based methods are still unsatisfying for the above practical applications. First, pure attention-based architectures like transformers need a substantial quantity of fault samples to offset the lack of inductive biases thus performing poorly under limited fault samples. Moreover, the poor fault classification dilemma further leads to the failure of the existing attention-based methods to identify the root causes. To develop a solution to the aforementioned problems, we innovatively propose a supervised contrastive convolutional attention mechanism (SCCAM) with ante-hoc interpretability, which solves the root cause analysis problem under limited fault samples for the first time. First, accurate classification results are obtained under limited fault samples. More specifically, we integrate the convolutional neural network (CNN) with attention mechanisms to provide strong intrinsic inductive biases of locality and spatial invariance, thereby strengthening the representational power under limited fault samples. In addition, we ulteriorly enhance the classification capability of the SCCAM method under limited fault samples by employing the supervised contrastive learning (SCL) loss. Second, a novel ante-hoc interpretable attention-based architecture is designed to directly obtain the root causes without expert knowledge. The convolutional block attention module (CBAM) is utilized to directly provide feature contributions behind each prediction thus achieving feature-level explanations. The proposed SCCAM method is testified on a continuous stirred tank heater (CSTH) and the Tennessee Eastman (TE) industrial process benchmark. Three common fault diagnosis scenarios are covered, including a balanced scenario for additional verification and two scenarios with limited fault samples (i.e., imbalanced scenario and long-tail scenario). The effectiveness of the presented SCCAM method is evidenced by the comprehensive results that show our method outperforms the state-of-the-art methods in terms of fault classification and root cause analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱啃大虾发布了新的文献求助10
2秒前
2秒前
2秒前
所所应助山水之乐采纳,获得10
3秒前
自渡完成签到 ,获得积分10
3秒前
3秒前
3秒前
Hello应助STH采纳,获得30
3秒前
3秒前
韓小慧发布了新的文献求助10
4秒前
bkagyin应助刘秀发采纳,获得10
5秒前
无名花生完成签到 ,获得积分10
5秒前
北阳发布了新的文献求助10
5秒前
流萤完成签到 ,获得积分10
7秒前
Aubrey完成签到,获得积分10
7秒前
anna1992完成签到,获得积分10
8秒前
dingdong258发布了新的文献求助10
8秒前
科研通AI6应助M.采纳,获得10
8秒前
aiyangyang发布了新的文献求助10
8秒前
9秒前
上官若男应助woodword采纳,获得10
10秒前
10秒前
memory完成签到,获得积分10
11秒前
zjz发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
小想完成签到,获得积分10
13秒前
秉文完成签到,获得积分10
14秒前
乐在奇中完成签到,获得积分10
14秒前
豆沙包子完成签到,获得积分10
15秒前
BEIBEI完成签到,获得积分10
15秒前
zjz完成签到,获得积分10
16秒前
fuiee完成签到,获得积分10
17秒前
17秒前
脑洞疼应助风中的芷蕾采纳,获得10
17秒前
18秒前
19秒前
小蘑菇应助自由的中蓝采纳,获得10
19秒前
扁桃体不发言完成签到,获得积分10
20秒前
20秒前
科研通AI6应助kkyy采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478576
求助须知:如何正确求助?哪些是违规求助? 4580175
关于积分的说明 14372478
捐赠科研通 4508453
什么是DOI,文献DOI怎么找? 2470739
邀请新用户注册赠送积分活动 1457509
关于科研通互助平台的介绍 1431418