Multifactor artificial intelligence model assists axillary lymph node surgery in breast cancer after neoadjuvant chemotherapy: multicenter retrospective cohort study

医学 乳腺癌 化疗 淋巴结 回顾性队列研究 新辅助治疗 肿瘤科 普通外科 内科学 癌症
作者
Teng Zhu,Yühong Huang,Wei Li,Yimin Zhang,Ying-Yi Lin,Minyi Cheng,Zhi‐Yong Wu,Guolin Ye,Ying Lin,Kun Wang
出处
期刊:International Journal of Surgery [Elsevier]
被引量:15
标识
DOI:10.1097/js9.0000000000000621
摘要

Background: The high false negative rate associated with sentinel lymph node biopsy (SLNB) often leads to unnecessary axillary lymph node dissection (ALND) following neoadjuvant chemotherapy (NAC) in breast cancer. We aimed to develop a multi-factor artificial intelligence (AI) model to aid in axillary lymph node surgery. Materials and Methods: A total of 1038 patients were enrolled, comprising 234 patients in the primary cohort, 723 patients in three external validation cohorts, and 81 patients in the prospective cohort. For predicting axillary lymph node response to NAC, robust longitudinal radiomics features were extracted from pre-NAC and post-NAC magnetic resonance images. The U test, the least absolute shrinkage and selection operator, and the spearman analysis were used to select the most significant features. A machine learning stacking model was constructed to detect ALN metastasis after NAC. By integrating the significant predictors, we developed a multi-factor AI-assisted surgery pipeline and compared its performance and false negative rate (FNR) with that of SLNB alone. Results: The machine learning stacking model achieved excellent performance in detecting ALN metastasis, with an area under the curve (AUC) of 0.958 in the primary cohort, 0.881 in the external validation cohorts, and 0.882 in the prospective cohort. Furthermore, the introduction of AI-assisted surgery reduced the FNRs from 14.88% (18/121) to 4.13% (5/121) in the primary cohort, from 16.55% (49/296) to 4.05% (12/296) in the external validation cohorts, and from 13.64% (3/22) to 4.55% (1/22) in the prospective cohort. Notably, when more than two SLNs were removed, the FNRs further decreased to 2.78% (2/72) in the primary cohort, 2.38% (4/168) in the external validation cohorts, and 0% (0/15) in the prospective cohort. Conclusion: Our study highlights the potential of AI-assisted surgery as a valuable tool for evaluating ALN response to NAC, leading to a reduction in unnecessary ALND procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxr完成签到 ,获得积分10
刚刚
Jasper应助小猪采纳,获得10
刚刚
unknowneil完成签到,获得积分10
刚刚
1秒前
1秒前
研友_ZAVod8完成签到,获得积分10
2秒前
2秒前
理想国的过客完成签到,获得积分10
2秒前
瓦瓦应助大大采纳,获得10
3秒前
佳jia发布了新的文献求助10
3秒前
3秒前
4秒前
壳壳完成签到,获得积分10
4秒前
5秒前
李健的小迷弟应助mmol采纳,获得10
5秒前
HY完成签到,获得积分10
6秒前
搞怪山晴发布了新的文献求助30
6秒前
领导范儿应助朴实的天晴采纳,获得10
6秒前
一颗小番茄完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
唐美璇完成签到,获得积分20
8秒前
8秒前
包容冰巧发布了新的文献求助10
8秒前
8秒前
朴实剑通完成签到,获得积分10
9秒前
9秒前
9秒前
摸鱼王完成签到,获得积分10
9秒前
Gauss应助zhihaiyu采纳,获得50
10秒前
10秒前
Ava应助陈十一yyyyy采纳,获得10
10秒前
栗子完成签到,获得积分10
10秒前
简化为完成签到,获得积分10
10秒前
KevinDante完成签到 ,获得积分10
11秒前
li完成签到,获得积分10
11秒前
娜娜完成签到,获得积分20
12秒前
豆本豆发布了新的文献求助10
12秒前
自知则知之完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839