已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid CNN-RNN approach for survival analysis in a Lung Cancer Screening study

心肺适能 比例危险模型 医学 队列 生存分析 危险系数 肺癌 内科学 置信区间
作者
Yaozhi Lu,Shahab Aslani,An Zhao,Ahmed Y. Shahin,David Barber,Mark Emberton,Daniel C. Alexander,Joseph Jacob
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (8): e18695-e18695 被引量:3
标识
DOI:10.1016/j.heliyon.2023.e18695
摘要

In this study, we present a hybrid CNN-RNN approach to investigate long-term survival of subjects in a lung cancer screening study. Subjects who died of cardiovascular and respiratory causes were identified whereby the CNN model was used to capture imaging features in the CT scans and the RNN model was used to investigate time series and thus global information. To account for heterogeneity in patients' follow-up times, two different variants of LSTM models were evaluated, each incorporating different strategies to address irregularities in follow-up time. The models were trained on subjects who underwent cardiovascular and respiratory deaths and a control cohort matched to participant age, gender, and smoking history. The combined model can achieve an AUC of 0.76 which outperforms humans at cardiovascular mortality prediction. The corresponding F1 and Matthews Correlation Coefficient are 0.63 and 0.42 respectively. The generalisability of the model is further validated on an 'external' cohort. The same models were applied to survival analysis with the Cox Proportional Hazard model. It was demonstrated that incorporating the follow-up history can lead to improvement in survival prediction. The Cox neural network can achieve an IPCW C-index of 0.75 on the internal dataset and 0.69 on an external dataset. Delineating subjects at increased risk of cardiorespiratory mortality can alert clinicians to request further more detailed functional or imaging studies to improve the assessment of cardiorespiratory disease burden. Such strategies may uncover unsuspected and under-recognised pathologies thereby potentially reducing patient morbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jeson完成签到,获得积分10
1秒前
乐乐应助菟小鹿采纳,获得10
1秒前
automan完成签到,获得积分10
3秒前
无花果应助li采纳,获得10
3秒前
Owen应助稳重以冬采纳,获得10
3秒前
luis完成签到,获得积分10
3秒前
小蘑菇应助deeferf采纳,获得10
5秒前
7秒前
邓超发布了新的文献求助10
7秒前
激昂的南晴完成签到 ,获得积分10
8秒前
9秒前
fkwwdamocles发布了新的文献求助10
11秒前
小李飞刀发布了新的文献求助10
12秒前
liuaq627完成签到 ,获得积分10
12秒前
小饶完成签到,获得积分10
13秒前
老虎皮完成签到,获得积分10
14秒前
菟小鹿发布了新的文献求助10
14秒前
酷炫的幻丝完成签到 ,获得积分10
14秒前
单纯灵松完成签到 ,获得积分20
16秒前
18秒前
小新完成签到 ,获得积分10
19秒前
19秒前
科研通AI5应助痴情的博超采纳,获得10
19秒前
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
小李老博应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
Ava应助徐个愿吧采纳,获得10
21秒前
Owen应助科研通管家采纳,获得30
21秒前
21秒前
半生瓜应助科研通管家采纳,获得20
21秒前
随遇而安应助科研通管家采纳,获得20
21秒前
21秒前
21秒前
21秒前
22秒前
22秒前
可爱的函函应助Yossi采纳,获得10
22秒前
谢青完成签到,获得积分10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837158
求助须知:如何正确求助?哪些是违规求助? 3379387
关于积分的说明 10508924
捐赠科研通 3099088
什么是DOI,文献DOI怎么找? 1706862
邀请新用户注册赠送积分活动 821288
科研通“疑难数据库(出版商)”最低求助积分说明 772499