An efficient ACO-based algorithm for task scheduling in heterogeneous multiprocessing environments

计算机科学 蚁群优化算法 调度(生产过程) 算法 作业车间调度 蚁群 启发式 数学优化 人工智能 数学 地铁列车时刻表 操作系统
作者
Jeffrey Elcock,Nekiesha Edward
出处
期刊:Array [Elsevier BV]
卷期号:17: 100280-100280 被引量:12
标识
DOI:10.1016/j.array.2023.100280
摘要

In heterogeneous computing environments, finding optimized solutions continues to be one of the most challenging problems as we continuously seek better and improved performances. Task scheduling in such environments is NP-hard, so it is imperative that we tackle this critical issue with a desire of producing effective and efficient solutions. For several types of applications, the task scheduling problem is crucial, and throughout the literature, there are a plethora of different algorithms using several different techniques and varying approaches. Ant Colony Optimization (ACO) is one such technique used to address the problem. This popular optimization technique is based on the cooperative behavior of ants seeking to identify the shortest path between their nest and food sources. It is with this in mind that we propose an ACO-based algorithm, called ACO-RNK, as an efficient solution to the task scheduling problem. Our algorithm utilizes pheromone and a priority-based heuristic, known as the upward rank value, as well as an insertion-based policy, along with a pheromone aging mechanism which aims to avoid premature convergence to guide the ants to good quality solutions. To evaluate the performance of our algorithm, we compared our algorithm with the HEFT algorithm and the MGACO algorithm using randomly generated directed acyclic graphs (DAGs). The simulation results indicated that our algorithm experienced comparable or even better performance, than the selected algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婉莹完成签到 ,获得积分0
1秒前
starwan完成签到 ,获得积分10
3秒前
开心的若烟完成签到,获得积分10
7秒前
smile完成签到,获得积分10
8秒前
Jeffery426完成签到,获得积分10
9秒前
嘻嘻哈哈啊完成签到 ,获得积分10
14秒前
咖啡味椰果完成签到 ,获得积分10
15秒前
研友_nqv5WZ完成签到 ,获得积分10
15秒前
冰留完成签到 ,获得积分10
16秒前
JACK完成签到,获得积分10
17秒前
抽烟不完成签到 ,获得积分10
17秒前
Huibo完成签到,获得积分10
17秒前
灵巧的十八完成签到 ,获得积分10
18秒前
研友_VZG7GZ应助鱼鱼鱼采纳,获得10
23秒前
23秒前
23秒前
wonwojo完成签到 ,获得积分10
25秒前
weijie完成签到,获得积分10
26秒前
27秒前
每天都要开心完成签到 ,获得积分10
28秒前
鹏826完成签到 ,获得积分10
30秒前
Jerry完成签到 ,获得积分10
30秒前
呆萌的源智完成签到 ,获得积分10
32秒前
CyberHamster完成签到,获得积分10
35秒前
夜阑卧听完成签到,获得积分10
35秒前
WGOIST完成签到,获得积分10
40秒前
陆王牛马完成签到 ,获得积分10
41秒前
marc107完成签到,获得积分10
41秒前
小花生完成签到 ,获得积分10
44秒前
榆木小鸟完成签到 ,获得积分10
45秒前
努力毕业的虎三撇完成签到,获得积分10
48秒前
风信子deon01完成签到,获得积分10
52秒前
52秒前
浮生若梦完成签到 ,获得积分10
53秒前
蓝色条纹衫完成签到 ,获得积分10
55秒前
55秒前
鱼鱼鱼发布了新的文献求助10
58秒前
dldldl完成签到,获得积分10
58秒前
lightman完成签到,获得积分10
1分钟前
谷粱靖柔发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792575
求助须知:如何正确求助?哪些是违规求助? 3336794
关于积分的说明 10282208
捐赠科研通 3053626
什么是DOI,文献DOI怎么找? 1675672
邀请新用户注册赠送积分活动 803659
科研通“疑难数据库(出版商)”最低求助积分说明 761495