Models of ultrasonic radiomics and clinical characters for lymph node metastasis assessment in thyroid cancer: a retrospective study

接收机工作特性 医学 甲状腺癌 淋巴结 放射科 淋巴结转移 甲状腺结节 甲状腺癌 转移 特征选择 颈淋巴结 回顾性队列研究 癌症 人工智能 甲状腺 计算机科学 病理 内科学
作者
Hui Zhu,Bing Yu,Yanyan Li,Yuhua Zhang,Juebin Jin,Yao Ai,Xiance Jin,Yan Yang
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:11: e14546-e14546 被引量:3
标识
DOI:10.7717/peerj.14546
摘要

Background Preoperative prediction of cervical lymph node metastasis in papillary thyroid carcinoma provided a basis for tumor staging and treatment decision. This study aimed to investigate the utility of machine learning and develop different models to preoperatively predict cervical lymph node metastasis based on ultrasonic radiomic features and clinical characteristics in papillary thyroid carcinoma nodules. Methods Data from 400 papillary thyroid carcinoma nodules were included and divided into training and validation group. With the help of machine learning, clinical characteristics and ultrasonic radiomic features were extracted and selected using randomforest and least absolute shrinkage and selection operator regression before classified by five classifiers. Finally, 10 models were built and their area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value and negative predictive value were measured. Results Among the 10 models, RF-RF model revealed the highest area under curve (0.812) and accuracy (0.7542) in validation group. The top 10 variables of it included age, seven textural features, one shape feature and one first-order feature, in which eight were high-dimensional features. Conclusions RF-RF model showed the best predictive performance for cervical lymph node metastasis. And the importance features selected by it highlighted the unique role of higher-dimensional statistical methods for radiomics analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的青雪完成签到,获得积分0
刚刚
怡然梦玉发布了新的文献求助10
1秒前
Jalynn完成签到,获得积分10
1秒前
星辰大海应助王宇航采纳,获得10
2秒前
cwj完成签到,获得积分20
2秒前
33完成签到,获得积分10
2秒前
2秒前
2秒前
happy发布了新的文献求助10
3秒前
linda268完成签到,获得积分10
3秒前
3秒前
Owen应助wangqi采纳,获得10
3秒前
二三完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助初余采纳,获得10
4秒前
4秒前
天外飞聪发布了新的文献求助10
5秒前
黄伊若完成签到 ,获得积分10
5秒前
5秒前
小蘑菇应助美好斓采纳,获得10
6秒前
Orange应助CJY采纳,获得10
6秒前
6秒前
6秒前
6秒前
XCL发布了新的文献求助10
6秒前
ergatoid发布了新的文献求助30
7秒前
朔月完成签到,获得积分10
7秒前
8秒前
Sean完成签到,获得积分10
8秒前
大力山槐完成签到,获得积分10
8秒前
gy发布了新的文献求助10
8秒前
cwj发布了新的文献求助30
8秒前
8秒前
8秒前
付理想完成签到,获得积分10
9秒前
无尘完成签到 ,获得积分10
10秒前
10秒前
入暖完成签到,获得积分10
10秒前
科研通AI5应助小综的fan儿采纳,获得10
11秒前
恰个泡芙完成签到,获得积分10
11秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Information Security and Cryptology Inscrypt 2024 Part I 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
Diagnostic Pathology: Kidney Diseases 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827809
求助须知:如何正确求助?哪些是违规求助? 3369942
关于积分的说明 10460280
捐赠科研通 3089785
什么是DOI,文献DOI怎么找? 1700055
邀请新用户注册赠送积分活动 817656
科研通“疑难数据库(出版商)”最低求助积分说明 770325