Development of preprocessing methods and revised EfficientNet for diabetic retinopathy detection

计算机科学 预处理器 糖尿病性视网膜病变 失明 眼底(子宫) 人工智能 可靠性(半导体) 图像质量 最大值和最小值 质量(理念) 机器学习 计算机视觉 图像(数学) 糖尿病 数学 眼科 验光服务 医学 数学分析 功率(物理) 哲学 物理 认识论 量子力学 内分泌学
作者
Chun‐Ling Lin,Zhi‐Xiang Jiang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (4): 1450-1466
标识
DOI:10.1002/ima.22874
摘要

The evolution of deep learning (DL) has made artificial intelligence image recognition a mature technology. Recently, the use of DL to identify diabetic retinopathy (DR) has been recognized as a major challenge. Retinal abnormalities caused by DR can damage the retina and thus cause permanent damage or even blindness. Therefore, the detection of diabetes symptoms at an early stage can help to considerably reduce the risk of blindness. The differences in environments, equipment, and photographers have led to the inconsistent specifications of images and have thus affected the efficiency of the training model for classifying the DR level. If low-quality fundus images are removed through an image quality assessment (Eye-Quality Library, EyeQ), the number of images of the trained model would considerably reduce, in turn affecting the reliability of the training model. To solve this problem, this paper proposes a preprocessing method to strengthen the image features. The results obtained in this study revealed that the preprocessing method could increase the amount of data available for the training model. Thus, this study improved the EfficientNet model for the enhancement of the classification performance of the DR level. The results also showed that an increase in the model accuracy from 0.7727 to 0.7920 for the classification of the different stages of DR. In addition, the results revealed that the revised EfficientNet could obtain better average area under the ROC curve among the five classes (0.926) than MobileNet (0.54) and the original EfficientNet (0.922). Finally, this study implemented the proposed system by using an application programming interface (API) to enable the users to upload a fundus image to the API and obtain the DR results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sue关注了科研通微信公众号
2秒前
2秒前
3秒前
3秒前
微笑的天抒完成签到,获得积分10
5秒前
momo完成签到,获得积分10
6秒前
7秒前
fufufu123发布了新的文献求助10
8秒前
小鬼完成签到,获得积分10
8秒前
hiahiayue发布了新的文献求助10
9秒前
传奇3应助toto采纳,获得10
10秒前
sumu发布了新的文献求助20
11秒前
11秒前
浮游应助tttttt采纳,获得10
11秒前
可爱的函函应助碧蓝青梦采纳,获得30
12秒前
12秒前
黎安安007完成签到,获得积分10
13秒前
15秒前
成就寒珊发布了新的文献求助10
16秒前
啦啦啦发布了新的文献求助10
16秒前
16秒前
外向渊思完成签到 ,获得积分10
17秒前
highlight发布了新的文献求助10
18秒前
sll完成签到 ,获得积分10
18秒前
内向翰完成签到,获得积分10
18秒前
Hello应助blackyu采纳,获得10
18秒前
Celeste发布了新的文献求助10
20秒前
激情的半雪完成签到 ,获得积分20
20秒前
20秒前
一指墨发布了新的文献求助20
21秒前
阔达初南完成签到 ,获得积分10
22秒前
23秒前
成就寒珊完成签到,获得积分10
23秒前
开门啊菇凉完成签到,获得积分0
24秒前
25秒前
26秒前
sumu完成签到,获得积分10
27秒前
所所应助highlight采纳,获得10
27秒前
28秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381431
求助须知:如何正确求助?哪些是违规求助? 4504724
关于积分的说明 14019133
捐赠科研通 4413985
什么是DOI,文献DOI怎么找? 2424512
邀请新用户注册赠送积分活动 1417493
关于科研通互助平台的介绍 1395274