独特性
边值问题
非线性系统
数学分析
理论(学习稳定性)
点(几何)
边界(拓扑)
数学
价值(数学)
应用数学
物理
计算机科学
几何学
量子力学
统计
机器学习
作者
R. Poovarasan,Thabet Abdeljawad,V. Govindaraj
标识
DOI:10.1088/1402-4896/ad6243
摘要
Abstract This study investigates the analysis of the existence, uniqueness, and stability of solutions for a $\Psi$-Caputo three-point nonlinear fractional boundary value problem using the Banach contraction principle and Sadovskii's fixed point theorem. We demonstrate the practical implications of our analytical advancements for each situation, illustrating how the components of the fractional boundary value problem emerge in real-life occurrences. Our work significantly enhances the field of applied mathematics by offering analytical solutions and valuable insights.
科研通智能强力驱动
Strongly Powered by AbleSci AI