已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Magnetic resonance imaging–based machine learning classification of schizophrenia spectrum disorders: a meta‐analysis

神经影像学 单变量 精神分裂症(面向对象编程) 多元统计 荟萃分析 功能磁共振成像 多元分析 置信区间 心理学 二元分析 人工智能 医学 机器学习 内科学 计算机科学 精神科 神经科学
作者
Fabio Di Camillo,David Antonio Grimaldi,Giulia Cattarinussi,Annabella Di Giorgio,Clara Locatelli,Adyasha Khuntia,Paolo Enrico,Paolo Brambilla,Nikolaos Koutsouleris,Fabio Sambataro
出处
期刊:Psychiatry and Clinical Neurosciences [Wiley]
被引量:6
标识
DOI:10.1111/pcn.13736
摘要

Background Recent advances in multivariate pattern recognition have fostered the search for reliable neuroimaging‐based biomarkers in psychiatric conditions, including schizophrenia. These approaches consider the complex pattern of alterations in brain function and structure, overcoming the limitations of traditional univariate methods. To assess the reliability of neuroimaging‐based biomarkers and the contribution of study characteristics in distinguishing individuals with schizophrenia spectrum disorder (SSD) from healthy controls (HCs), we conducted a systematic review of the studies that used multivariate pattern recognition for this objective. Methods We systematically searched PubMed, Scopus, and Web of Science for studies on SSD classification using multivariate pattern analysis on magnetic resonance imaging data. We employed a bivariate random‐effects meta‐analytic model to explore the classification of sensitivity (SE) and specificity (SP) across studies while also evaluating the moderator effects of clinical and non‐clinical variables. Results A total of 119 studies (with 12,723 patients with SSD and 13,196 HCs) were identified. The meta‐analysis estimated a SE of 79.1% (95% confidence interval [CI], 77.1%–81.0%) and a SP of 80.0% (95% CI, 77.8%–82.0%). In particular, the Positive and Negative Syndrome Scale and the Global Assessment of Functioning scores, age, age of onset, duration of untreated psychosis, deep learning, algorithm type, features selection, and validation methods had significant effects on classification performance. Conclusions Multivariate pattern analysis reliably identifies neuroimaging‐based biomarkers of SSD, achieving ∼80% SE and SP. Despite clinical heterogeneity, discernible brain modifications effectively differentiate SSD from HCs. Classification performance depends on patient‐related and methodological factors crucial for the development, validation, and application of prospective models in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小不溜完成签到 ,获得积分10
刚刚
1秒前
科研通AI6应助Jiaxixi采纳,获得10
1秒前
香蕉觅云应助威武的若南采纳,获得10
2秒前
AXLL发布了新的文献求助10
2秒前
王博林发布了新的文献求助10
4秒前
5秒前
7秒前
7秒前
慕青应助lkq采纳,获得10
7秒前
Orange应助风清扬采纳,获得10
7秒前
9秒前
ccm应助雯yuki采纳,获得10
10秒前
王聪发布了新的文献求助10
11秒前
霖lin发布了新的文献求助10
11秒前
白华苍松发布了新的文献求助10
12秒前
清茶发布了新的文献求助10
12秒前
17秒前
遇晴完成签到,获得积分10
18秒前
liao应助王博林采纳,获得30
19秒前
yinch发布了新的文献求助20
20秒前
20秒前
21秒前
清茶完成签到,获得积分10
21秒前
遇晴发布了新的文献求助10
22秒前
华仔应助刻苦的紫翠采纳,获得10
23秒前
香蕉觅云应助金宝采纳,获得10
24秒前
HANZHANG完成签到,获得积分10
25秒前
iCorner完成签到,获得积分10
26秒前
杨念一完成签到,获得积分10
27秒前
李爱国应助拾意采纳,获得10
30秒前
子车茗应助iCorner采纳,获得30
34秒前
郭丹丹完成签到 ,获得积分10
34秒前
花满楼应助霖lin采纳,获得10
36秒前
CodeCraft应助WDD采纳,获得10
36秒前
37秒前
刻苦的紫翠完成签到,获得积分20
37秒前
37秒前
38秒前
Orange应助ll采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475942
求助须知:如何正确求助?哪些是违规求助? 4577610
关于积分的说明 14362245
捐赠科研通 4505491
什么是DOI,文献DOI怎么找? 2468706
邀请新用户注册赠送积分活动 1456339
关于科研通互助平台的介绍 1429950