强化学习
避障
运动规划
计算机科学
人工智能
稳健性(进化)
计算机视觉
障碍物
实时计算
机器人
移动机器人
政治学
生物化学
基因
化学
法学
作者
Jingrui Guo,Guanzhong Zhou,Hailong Huang,Chao Huang
出处
期刊:Unmanned Systems
[World Scientific]
日期:2024-08-11
卷期号:13 (04): 1065-1084
被引量:1
标识
DOI:10.1142/s2301385025500669
摘要
This paper tackles the intricate challenge of autonomous navigation for Unmanned Aerial Vehicles (UAVs) through dynamically changing environments. We focus on a sophisticated Deep Reinforcement Learning (DRL) approach using the Soft Actor-Critic (SAC) algorithm, optimized for UAV path planning within a continuous action space. This methodology leverages environmental image data to enhance the precision of flight maneuvers and effective obstacle avoidance. Our approach, validated through extensive simulations in Gazebo and field tests, demonstrates the algorithm’s efficacy in enabling UAVs to adeptly navigate obstacles using depth maps. The study further explores the robustness of the SAC algorithm by comparing it with traditional DRL methods, emphasizing its superior performance in real-world applications. This research contributes significantly to advancing UAV technology, particularly in autonomous motion planning, by integrating cutting-edge machine learning techniques. The video link is: https://www.youtube.com/watch?v=Nd_aMzejNXY .
科研通智能强力驱动
Strongly Powered by AbleSci AI