Expansion Planning of Hybrid Electrical and Thermal Systems Using Reconfiguration and Adaptive Bat Algorithm

控制重构 可靠性(半导体) 数学优化 计算机科学 遗传算法 网络拓扑 趋同(经济学) 工程类 可靠性工程 数学 功率(物理) 物理 嵌入式系统 量子力学 经济 经济增长 操作系统
作者
Ali Reza Abbasi,Mahmoud Zadehbagheri
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (16): e36054-e36054 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36054
摘要

_ This study introduces a comprehensive model for the concurrent expansion planning of various energy systems and their associated equipment. The need to reduce network costs, emissions, losses, and feeder loading, as well as to enhance network reliability and voltage profile, mandates the utilization of proper multi-objective planning models that respect all network constraints. The introduced framework includes units for generating both electrical and thermal energies. The model leverages conventional expansion alternatives such as the installation of new lines, network reconfiguration, rewiring, and the addition of new thermal and electrical generating units to the network. Expansion planning involves determining the optimal time, location, and type of new installations to meet future energy demands while minimizing costs and emissions. Reconfiguration refers to altering the network topology to improve reliability and reduce losses. The proposed expansion planning is formulated as a discrete, nonlinear, and non-convex optimization problem, which is solved using the Self Adaptive Learning Bat Algorithm (SALBA). This algorithm improves convergence speed and increases the diversity of the search population, enhancing the likelihood of finding the global optimum. Numerical simulations of the proposed methodology on two modified standard IEEE test systems corroborate the efficacy and feasibility of the suggested approach. Key innovations include the comprehensive modeling for concurrent expansion planning, the use of an advanced optimization algorithm, and a focus on reducing costs, emissions, losses, and feeder loading while enhancing network reliability and voltage profile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Auston_zhong应助QR采纳,获得10
4秒前
顾矜应助勤恳的宛菡采纳,获得10
4秒前
pagoda发布了新的文献求助50
4秒前
斤斤完成签到,获得积分10
6秒前
我是老大应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
呆萌鱼应助科研通管家采纳,获得10
10秒前
PageSeo2应助科研通管家采纳,获得10
10秒前
summer应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Cat应助科研通管家采纳,获得20
10秒前
至拙发布了新的文献求助10
13秒前
Komorebi完成签到,获得积分10
13秒前
15秒前
bc应助KennyS采纳,获得30
19秒前
科研通AI2S应助chen采纳,获得10
19秒前
22秒前
绿叶发布了新的文献求助20
22秒前
ye完成签到,获得积分10
22秒前
fancy完成签到 ,获得积分10
24秒前
26秒前
Auston_zhong应助月亮采纳,获得10
27秒前
27秒前
白开水完成签到,获得积分10
28秒前
28秒前
29秒前
hzhniubility完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339