Expansion Planning of Hybrid Electrical and Thermal Systems Using Reconfiguration and Adaptive Bat Algorithm

控制重构 可靠性(半导体) 数学优化 计算机科学 遗传算法 网络拓扑 趋同(经济学) 工程类 可靠性工程 数学 功率(物理) 物理 嵌入式系统 经济 操作系统 量子力学 经济增长
作者
Ali Reza Abbasi,Mahmoud Zadehbagheri
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (16): e36054-e36054 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36054
摘要

_ This study introduces a comprehensive model for the concurrent expansion planning of various energy systems and their associated equipment. The need to reduce network costs, emissions, losses, and feeder loading, as well as to enhance network reliability and voltage profile, mandates the utilization of proper multi-objective planning models that respect all network constraints. The introduced framework includes units for generating both electrical and thermal energies. The model leverages conventional expansion alternatives such as the installation of new lines, network reconfiguration, rewiring, and the addition of new thermal and electrical generating units to the network. Expansion planning involves determining the optimal time, location, and type of new installations to meet future energy demands while minimizing costs and emissions. Reconfiguration refers to altering the network topology to improve reliability and reduce losses. The proposed expansion planning is formulated as a discrete, nonlinear, and non-convex optimization problem, which is solved using the Self Adaptive Learning Bat Algorithm (SALBA). This algorithm improves convergence speed and increases the diversity of the search population, enhancing the likelihood of finding the global optimum. Numerical simulations of the proposed methodology on two modified standard IEEE test systems corroborate the efficacy and feasibility of the suggested approach. Key innovations include the comprehensive modeling for concurrent expansion planning, the use of an advanced optimization algorithm, and a focus on reducing costs, emissions, losses, and feeder loading while enhancing network reliability and voltage profile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禁止通行完成签到,获得积分10
刚刚
Gtpangda完成签到 ,获得积分10
刚刚
123发布了新的文献求助10
2秒前
2秒前
幽默的友灵完成签到,获得积分10
3秒前
jerry发布了新的文献求助10
3秒前
机灵柚子应助123free采纳,获得20
4秒前
4秒前
6秒前
朱朱朱完成签到,获得积分10
6秒前
程勋航完成签到,获得积分10
6秒前
book卟发布了新的文献求助10
7秒前
恒河鲤完成签到,获得积分10
8秒前
iNk应助木木彡采纳,获得20
9秒前
ght发布了新的文献求助10
10秒前
11秒前
twob发布了新的文献求助10
11秒前
14秒前
wanci应助晶生采纳,获得10
14秒前
15秒前
邢夏之发布了新的文献求助10
17秒前
yznfly完成签到,获得积分0
18秒前
11完成签到,获得积分20
19秒前
jay完成签到 ,获得积分10
20秒前
yzz发布了新的文献求助20
20秒前
Jeffery426完成签到,获得积分10
20秒前
大模型应助twob采纳,获得10
21秒前
共享精神应助知识探索家采纳,获得10
22秒前
27秒前
fffzy完成签到,获得积分10
28秒前
29秒前
11关注了科研通微信公众号
29秒前
yzz完成签到,获得积分20
29秒前
savica完成签到,获得积分10
31秒前
葛稀完成签到,获得积分10
32秒前
基金中中中完成签到,获得积分10
32秒前
mc应助王旺碎冰冰采纳,获得10
32秒前
32秒前
34秒前
下雨的颜色完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278