A Structural Topic and Sentiment-Discourse Model for Text Analysis

情绪分析 计算机科学 主题模型 自然语言处理 语言学 哲学
作者
Li Chen,Shawn Mankad
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.00261
摘要

We consider the common setting where one observes a large number of opinionated text documents and related covariates, such as the text of online reviews along with the date of the review and the author demographic information. In this setting it can be of interest to understand how the covariates determine the text composition, as well as the prevalence, sentiment, and/or discourse of various discussion themes. Yet, most topic modeling methods in the machine learning literature are designed to summarize the text for the purpose of exploratory analysis and not to perform this type of formal statistical inference. Further, topic modeling methods generally do not try to estimate the sentiment or discourse of discussion along separate topics that can be critical in business applications (e.g., for summarizing service or product quality). We develop a topic model called the structural topic and sentiment-discourse (STS) model that introduces a new document-level latent variable that captures the sentiment and/or discourse (termed as “sentiment-discourse”) for each topic, which modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by document-level covariates to allow for experimental control and regression analysis. We also introduce new computational methods to resolve scalability issues that have forced previous models to restrict to a small number of categorical covariates. We benchmark the STS model on three real-world data sets from surveys, blogs, and Yelp restaurant reviews around the COVID-19 pandemic. Our model recovers meaningful results including rich insights about how COVID-19 affects online reviews, demonstrating that the STS model can be useful for regression analysis with text data in addition to topic modeling’s traditional use of descriptive analysis. This paper was accepted by Anindya Ghose, information systems. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.00261 . An updated version of the R package implementing the STS model is available at https://CRAN.R-project.org/package=sts .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clare完成签到 ,获得积分10
12秒前
16秒前
20秒前
Sprinkle发布了新的文献求助10
26秒前
papertanchishe完成签到,获得积分10
29秒前
Spice完成签到 ,获得积分10
38秒前
qj完成签到 ,获得积分10
40秒前
青衫完成签到 ,获得积分10
40秒前
yujie完成签到 ,获得积分10
41秒前
lili完成签到 ,获得积分10
44秒前
fin完成签到 ,获得积分10
51秒前
53秒前
modernfamilyfan完成签到,获得积分20
53秒前
54秒前
熊熊出击完成签到 ,获得积分10
1分钟前
经纲完成签到 ,获得积分10
1分钟前
握瑾怀瑜完成签到 ,获得积分0
1分钟前
1分钟前
王王完成签到 ,获得积分10
1分钟前
锡锡爱看文献完成签到 ,获得积分10
1分钟前
1分钟前
32429606完成签到 ,获得积分10
1分钟前
lhn完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
Nick完成签到,获得积分10
1分钟前
芙瑞完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
Hello应助ybwei2008_163采纳,获得10
2分钟前
silsotiscolor完成签到,获得积分10
2分钟前
Bake完成签到 ,获得积分10
2分钟前
Ding-Ding完成签到,获得积分10
2分钟前
eee应助历冰雪采纳,获得10
2分钟前
zokor完成签到 ,获得积分10
2分钟前
2分钟前
书生完成签到,获得积分10
2分钟前
科研通AI2S应助ybwei2008_163采纳,获得10
2分钟前
Asura完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321559
关于积分的说明 10206330
捐赠科研通 3036657
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797424
科研通“疑难数据库(出版商)”最低求助积分说明 757839