亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Structural Topic and Sentiment-Discourse Model for Text Analysis

情绪分析 计算机科学 主题模型 自然语言处理 语言学 哲学
作者
Li Chen,Shawn Mankad
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/mnsc.2022.00261
摘要

We consider the common setting where one observes a large number of opinionated text documents and related covariates, such as the text of online reviews along with the date of the review and the author demographic information. In this setting it can be of interest to understand how the covariates determine the text composition, as well as the prevalence, sentiment, and/or discourse of various discussion themes. Yet, most topic modeling methods in the machine learning literature are designed to summarize the text for the purpose of exploratory analysis and not to perform this type of formal statistical inference. Further, topic modeling methods generally do not try to estimate the sentiment or discourse of discussion along separate topics that can be critical in business applications (e.g., for summarizing service or product quality). We develop a topic model called the structural topic and sentiment-discourse (STS) model that introduces a new document-level latent variable that captures the sentiment and/or discourse (termed as “sentiment-discourse”) for each topic, which modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by document-level covariates to allow for experimental control and regression analysis. We also introduce new computational methods to resolve scalability issues that have forced previous models to restrict to a small number of categorical covariates. We benchmark the STS model on three real-world data sets from surveys, blogs, and Yelp restaurant reviews around the COVID-19 pandemic. Our model recovers meaningful results including rich insights about how COVID-19 affects online reviews, demonstrating that the STS model can be useful for regression analysis with text data in addition to topic modeling’s traditional use of descriptive analysis. This paper was accepted by Anindya Ghose, information systems. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.00261 . An updated version of the R package implementing the STS model is available at https://CRAN.R-project.org/package=sts .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可夫司机完成签到 ,获得积分10
23秒前
34秒前
小贾爱喝冰美式完成签到 ,获得积分10
51秒前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
Ava应助科研通管家采纳,获得10
2分钟前
鬼见愁应助科研通管家采纳,获得10
2分钟前
辣辣完成签到,获得积分10
2分钟前
fufufu123完成签到 ,获得积分10
3分钟前
alex_zhao完成签到,获得积分10
3分钟前
002完成签到,获得积分10
3分钟前
3分钟前
3分钟前
001完成签到,获得积分10
3分钟前
十三发布了新的文献求助10
3分钟前
003完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
jiangjiang完成签到 ,获得积分10
4分钟前
易水寒完成签到 ,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
Cucumber发布了新的文献求助30
5分钟前
Cucumber完成签到,获得积分10
6分钟前
6分钟前
十二倍根号二完成签到,获得积分10
6分钟前
Sanqainli发布了新的文献求助10
6分钟前
鬼见愁应助科研通管家采纳,获得20
6分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
jun完成签到,获得积分10
6分钟前
伊叶之丘完成签到 ,获得积分10
6分钟前
6分钟前
完美世界应助大力的熊猫采纳,获得30
7分钟前
8分钟前
8分钟前
顺利的小蚂蚁完成签到,获得积分10
8分钟前
8分钟前
小蘑菇应助闪闪的硬币采纳,获得10
8分钟前
woxinyouyou完成签到,获得积分0
8分钟前
火星完成签到 ,获得积分10
9分钟前
笨笨小蚂蚁完成签到 ,获得积分10
9分钟前
脑洞疼应助jagger采纳,获得10
9分钟前
loen完成签到,获得积分10
9分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130726
求助须知:如何正确求助?哪些是违规求助? 3667550
关于积分的说明 11600888
捐赠科研通 3365590
什么是DOI,文献DOI怎么找? 1849109
邀请新用户注册赠送积分活动 912878
科研通“疑难数据库(出版商)”最低求助积分说明 828355