A New Federated Learning Model for Host Intrusion Detection System Under Non-IID Data

寄主(生物学) 计算机科学 入侵检测系统 数据建模 数据挖掘 数据库 生态学 生物
作者
Wei Guo,Zhiwei Yao,Yongfei Liu,Lanxue Zhang,Liangxiong Li,Tong Li,Bingzhen Wu
标识
DOI:10.1109/smc53992.2023.10393972
摘要

Host Intrusion Detection System (HIDS) is an important research topic in the field of cyberspace security. With the explosion in the number of malicious attacks in recent years, machine learning-based detection method is now the most common and efficient approach. While traditional centralized machine learning needs to transmit data to the central server for training, which not only requires the central server to have large computing resources, but also causes problems such as sensitive data leakage and communication overhead. As a distributed machine learning paradigm, Federated Learning (FL) can achieve multi-party collaborative training and aggregate a unified global model without data sharing, which can well alleviate these problems. It is worth noting that existing studies on the use of FL in HIDS are all conducted in the scenario where the data is independent and identically distributed (IID). However, due to the different context of hosts, the data generated by hosts is usually non-independent and identically distributed (Non-IID) in reality. Therefore, We investigate the impact of Non-IID data with different skew levels on FL in HIDS. On this basis, we propose a data augmentation FL algorithm based on Synthetic Minority Over-Sampling Technique (SMOTE) to reduce the impact of Non-IID data. We also develop a data collection module using extended Berkeley Packet Filter (eBPF) technology to collect a dataset for experiments. Experimental results show that our proposed FL algorithm can effectively improve the performance of HIDS under Non-IID data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zack发布了新的文献求助20
1秒前
快乐的蓝完成签到 ,获得积分10
1秒前
李友健完成签到 ,获得积分10
1秒前
hope完成签到,获得积分10
2秒前
大力的宝川完成签到 ,获得积分10
3秒前
dreamode完成签到,获得积分10
7秒前
Zhe完成签到,获得积分10
10秒前
旧城旧巷等旧人完成签到 ,获得积分10
12秒前
研友_LN3xyn完成签到,获得积分10
12秒前
15秒前
17秒前
今后应助韩hqf采纳,获得10
17秒前
fbwg完成签到,获得积分10
19秒前
Mi酷完成签到,获得积分10
19秒前
panpanliumin完成签到,获得积分0
20秒前
20秒前
20秒前
孤独听雨的猫完成签到 ,获得积分10
20秒前
ZhaoRongzhe发布了新的文献求助10
21秒前
π1完成签到,获得积分10
22秒前
舒克完成签到,获得积分10
24秒前
π1发布了新的文献求助10
25秒前
娇娇大王完成签到,获得积分10
26秒前
叶子完成签到 ,获得积分10
27秒前
知更鸟完成签到,获得积分10
27秒前
Zhe关闭了Zhe文献求助
27秒前
半颗橙子完成签到 ,获得积分10
28秒前
xyj完成签到,获得积分10
28秒前
彭于晏应助韩hqf采纳,获得10
35秒前
万能图书馆应助π1采纳,获得10
35秒前
Clover完成签到 ,获得积分10
38秒前
科目三应助fbwg采纳,获得10
40秒前
ll完成签到 ,获得积分10
45秒前
46秒前
大气的向松完成签到 ,获得积分10
46秒前
石子完成签到 ,获得积分10
47秒前
丘比特应助wowser采纳,获得10
48秒前
lsy完成签到,获得积分10
51秒前
Aurora.H完成签到,获得积分10
51秒前
灵巧的十八完成签到 ,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734