Synthesis and Detection Algorithms for Oblique Stripe Noise of Space-borne Remote Sensing Images

计算机科学 遥感 噪音(视频) 计算机视觉 空格(标点符号) 人工智能 斜格 地质学 图像(数学) 语言学 操作系统 哲学
作者
Binbo Li,Da Xie,Yu Wu,Lijuan Zheng,Chongbin Xu,Ying Zhou,Yibo Fu,Chenglong Wang,Bin Liu,Xiaoya Zuo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3360268
摘要

Oblique stripe noise widely appears in remote sensing images after image correction, exhibiting arbitrary tilt angles and parallel distribution. Due to its arbitrary randomness in tilt angles and lengths, oblique stripe noise increases the difficulty of detection compared to vertical or horizontal stripe noise. For the first time, we propose a group of oblique stripe noise synthesis and detection algorithms combining imaging mechanisms and deep learning. To get controllable synthetic oblique stripe noise data for training detection model, two sample augmentation methods are presented by the image correction’s imaging mechanisms with new linear transformation and the generative adversarial network algorithm with Cycle-GAN, respectively. A large-scale simulated stripe noise dataset (SOSD, simulated oblique stripe noise dataset) is simulated using these two methods. A new deep learning detection algorithm (RDOS, Robust detection of oblique stripe Noise) is presented considering the presence of oblique stripe noise. RDOS is trained using both SOSD and a real stripe noise dataset, and it obtains the optimal detection model for testing. The experimental results show that the accuracy reaches 82.93%, the recall rate reaches 85.17%, the F1 score reaches 84.04%, the average precision (AP) reaches 82.34%, and the frames per second (FPS) reaches 33.33. Compared with the general line detection models, our model exceeds ~300% in accuracy and ~60% in speed. In the future, the proposed algorithms have great potential for application in various areas such as quality evaluation, image preprocessing, and engineering problems related to multi-angle linear object augmentation and detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小波发布了新的文献求助30
刚刚
阳光总在风雨后完成签到,获得积分10
1秒前
1秒前
1秒前
RY完成签到,获得积分10
3秒前
3秒前
4秒前
万能图书馆应助小章采纳,获得10
4秒前
海盐黑胡椒123完成签到,获得积分10
4秒前
4秒前
芳华如梦完成签到 ,获得积分10
4秒前
淡淡的航空完成签到,获得积分10
5秒前
科研挂发布了新的文献求助10
5秒前
Ok发布了新的文献求助30
6秒前
卓儿完成签到,获得积分10
6秒前
6秒前
万能图书馆应助练习者采纳,获得10
6秒前
小脑斧发布了新的文献求助10
6秒前
呆萌幼晴完成签到,获得积分10
7秒前
DRYAN完成签到,获得积分10
7秒前
潞垚发布了新的文献求助10
7秒前
可靠F完成签到,获得积分10
7秒前
8秒前
Yolanda完成签到 ,获得积分10
8秒前
海阔光明发布了新的文献求助10
8秒前
科目三应助siestaMiao采纳,获得10
8秒前
nn发布了新的文献求助10
9秒前
9秒前
10秒前
kk完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
斯文的斩完成签到,获得积分10
12秒前
13秒前
橡皮鱼完成签到,获得积分10
13秒前
外向的口红关注了科研通微信公众号
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868