Causal relationship between diabetes and depression: A bidirectional Mendelian randomization study

孟德尔随机化 萧条(经济学) 单核苷酸多态性 糖尿病 优势比 置信区间 全基因组关联研究 肿瘤科 医学 内科学 遗传学 生物 内分泌学 基因 遗传变异 宏观经济学 基因型 经济
作者
Zhe Wang,Zhiqiang Du,Rongrong Lu,Qin Zhou,Ying Jiang,Haohao Zhu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:351: 956-961 被引量:5
标识
DOI:10.1016/j.jad.2024.02.031
摘要

This study explores the causal relationship between diabetes and depression using a two-sample Mendelian Randomization (TSMR) method. The study selected single nucleotide polymorphisms (SNPs) closely associated with diabetes and depression in European populations from the Genome-Wide Association Study (GWAS) database, to serve as instrumental variables (IVs). The main evaluation method was inverse variance weighted analysis (IVW), supplemented by verification using Weighted median, Weighted mode, and MR Egger methods. The Odds Ratio (OR) and 95 % Confidence Interval (CI) were used as the main evaluation indicators, along with sensitivity analysis. This study found a negative correlation between diabetes and depression, suggesting that diabetes may reduce the risk of depression [IVW(FE): OR: 0.901, 95 % CI: 0.823 to 0.987; P = 0.025 < 0.05]. This finding was further confirmed by the Weighted median [OR: 0.844, 95 % CI: 0.730 to 0.974; P = 0.021 < 0.05] and Weighted mode method [OR: 0.766, 95 % CI: 0.637 to 0.921; P = 0.006 < 0.05]. However, the reverse showed no causal relationship between depression and diabetes (P > 0.05). Sensitivity analysis found no pleiotropy, and there were no large influences from individual SNPs on the result's robustness; the results are stable and reliable. For the first time, this study using TSMR analysis found a negative correlation between diabetes and the risk of depression onset in European populations, suggesting that diabetes might reduce the risk of depression. But as the mechanisms are still unclear, these findings warrant further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jasmineyy完成签到,获得积分10
刚刚
pierre_gasly发布了新的文献求助10
刚刚
roclie发布了新的文献求助10
1秒前
1秒前
左丘冥完成签到,获得积分10
1秒前
dd完成签到,获得积分20
1秒前
蕃薯叶应助研友_7ZeNx8采纳,获得10
2秒前
2秒前
子啼当归发布了新的文献求助10
2秒前
2秒前
田田完成签到,获得积分10
4秒前
今天也要好好学习完成签到,获得积分10
4秒前
踏实夏瑶完成签到,获得积分20
5秒前
lbt完成签到,获得积分10
5秒前
清秀千兰发布了新的文献求助10
6秒前
weiwei完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
Meiyu发布了新的文献求助10
6秒前
moment关注了科研通微信公众号
7秒前
7秒前
YOLO发布了新的文献求助20
7秒前
8秒前
勤劳糜完成签到 ,获得积分10
9秒前
jiyishuaxin完成签到,获得积分10
9秒前
9秒前
9秒前
pierre_gasly完成签到,获得积分10
9秒前
乔杰发布了新的文献求助10
10秒前
桐桐应助Meiyu采纳,获得10
10秒前
英姑应助yinzzzzzzz采纳,获得10
10秒前
未改完成签到,获得积分10
10秒前
Johnpick发布了新的文献求助10
11秒前
上官若男应助铁树采纳,获得10
11秒前
11秒前
K2L完成签到,获得积分10
11秒前
xiaoarui17发布了新的文献求助10
12秒前
CEJ发布了新的文献求助10
12秒前
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816738
求助须知:如何正确求助?哪些是违规求助? 3360137
关于积分的说明 10406832
捐赠科研通 3078164
什么是DOI,文献DOI怎么找? 1690598
邀请新用户注册赠送积分活动 813910
科研通“疑难数据库(出版商)”最低求助积分说明 767889