材料科学
透射率
光电子学
可再生能源
折射率
工程物理
光学
电气工程
工程类
物理
作者
Noor Mohammad,Yun Zhang,Wenhui Xu,Sai Swapneel Aranke,Daniel Carne,Pengfei Deng,Fengyin Du,Xiulin Ruan,Tian Li
出处
期刊:Small
[Wiley]
日期:2024-02-14
卷期号:20 (27)
被引量:20
标识
DOI:10.1002/smll.202303706
摘要
Abstract Smart windows that can passively regulate incident solar radiation by dynamically modulating optical transmittance have attracted increasing scientific interest due to their potential economic and environmental savings. However, challenges remain in the global adoption of such systems, given the extreme variability in climatic and economic conditions across different geographical locations. Aiming these issues, a methylcellulose (MC) salt system is synthesized with high tunability for intrinsic optical transmittance (89.3%), which can be applied globally to various locations. Specifically, the MC window exhibits superior heat shielding potential below transition temperatures, becoming opaque at temperatures above the Lower Critical Solution Temperature and reducing the solar heat gain by 55%. This optical tunability is attributable to the particle size change triggered by the temperature‐induced reversible coil‐to‐globular transition. This leads to effective refractive index and scattering modulation, making them prospective solutions for light management systems, an application ahead of intelligent fenestration systems. During the field tests, MC‐based windows demonstrated a 9 °C temperature decrease compared to double‐pane windows on sunny days and a 5 °C increase during winters, with simulations predicting an 11% energy savings. The ubiquitous availability of materials, low cost, and ease‐of‐manufacturing will provide technological equity and foster the ambition toward net‐zero buildings.
科研通智能强力驱动
Strongly Powered by AbleSci AI