Extracting Muscle Geometrical Features With a Fabric-Based Wearable Sensor for Human Motion Intent Recognition

可穿戴计算机 人体运动 人工智能 运动(物理) 计算机视觉 计算机科学 模式识别(心理学) 嵌入式系统
作者
Enhao Zheng,Jiacheng Wan,Nanxing Hu,Qining Wang
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tmech.2024.3363454
摘要

Fabric-based wearable sensing is receiving increasing attention in the field of wearable robots. In our study, we propose a fabric-based sensing method for human motion recognition/estimation. The approach was developed with an elastic sleeve integrated with four bend sensors and the superellipse-based construction algorithm. Unlike existing techniques, our method can extract muscular geometrical features in the anatomical cross-sectional plane. To validate our method, we conducted evaluations on 14 subjects, including time response evaluations, isometric grip force estimation, forearm/lower limb joint angle estimation, discrete lower limb posture recognition, and continuous gait phase estimation. First, our method produced comparable results to the state-of-the-art approaches. The average $R^{2}$ values for joint angle estimation were 0.84–0.94, the average accuracy for lower limb posture recognition was 99.78%, and the average estimation error for gait phase was below 1% of a complete gait cycle. Second, we accomplished tasks that existing fabric-based mechanical sensors are unable to achieve. We demonstrated that our method detected motion onsets before the actual joint movements in voluntary dorsiflexion and sit-to-stand transition tasks. In addition, we achieved isometric grip force estimation with an average $R^{2}$ of 0.89. Unlike stretch-based methods that measure the response of movements, our method extracts human motion intents before the actual movements occur. This extends the measurement scope of fabric-based wearable sensing for human motion recognition. In future work, we will focus on sensor integration and robot control to further enhance our method's capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄石发布了新的文献求助10
1秒前
2秒前
老孟完成签到,获得积分10
2秒前
Nuyoah完成签到 ,获得积分10
4秒前
机灵曼青完成签到 ,获得积分10
5秒前
科研通AI5应助ljs采纳,获得10
5秒前
寒冷西牛完成签到,获得积分20
7秒前
skycool完成签到,获得积分10
8秒前
tender完成签到,获得积分10
8秒前
小小小新完成签到,获得积分20
9秒前
ChiariRay发布了新的文献求助10
10秒前
12秒前
16秒前
专注流沙发布了新的文献求助10
17秒前
SciGPT应助昵称无法显示采纳,获得50
17秒前
典雅的纸飞机完成签到 ,获得积分10
18秒前
研友_LOqqmZ完成签到 ,获得积分10
19秒前
yqf完成签到,获得积分10
19秒前
上官若男应助打地鼠工人采纳,获得10
21秒前
21秒前
Orange应助xx采纳,获得10
23秒前
科研通AI5应助飞快的厉采纳,获得10
25秒前
ljs发布了新的文献求助10
26秒前
Orange应助1huiqina采纳,获得10
28秒前
嘚嘚完成签到,获得积分10
28秒前
英姑应助歪锥锥采纳,获得10
29秒前
哈哈哈哈哈哈关注了科研通微信公众号
30秒前
旷野发布了新的文献求助10
30秒前
拼搏太英完成签到,获得积分10
31秒前
ljs完成签到,获得积分10
34秒前
35秒前
烟花应助伶俐如冰采纳,获得10
36秒前
今后应助ChiariRay采纳,获得10
38秒前
39秒前
1huiqina发布了新的文献求助10
39秒前
旷野完成签到,获得积分10
41秒前
44秒前
桔梗完成签到,获得积分10
45秒前
明理宛秋完成签到 ,获得积分10
45秒前
47秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445