An Adaptive Linear Programming Algorithm with Parameter Learning

计算机科学 线性规划 算法 十字交叉算法 线性分式规划 数学优化 数学
作者
Lin Guo,Anand Balu Nellippallil,Warren Smith,Janet K. Allen,Farrokh Mistree
出处
期刊:Algorithms [MDPI AG]
卷期号:17 (2): 88-88 被引量:3
标识
DOI:10.3390/a17020088
摘要

When dealing with engineering design problems, designers often encounter nonlinear and nonconvex features, multiple objectives, coupled decision making, and various levels of fidelity of sub-systems. To realize the design with limited computational resources, problems with the features above need to be linearized and then solved using solution algorithms for linear programming. The adaptive linear programming (ALP) algorithm is an extension of the Sequential Linear Programming algorithm where a nonlinear compromise decision support problem (cDSP) is iteratively linearized, and the resulting linear programming problem is solved with satisficing solutions returned. The reduced move coefficient (RMC) is used to define how far away from the boundary the next linearization is to be performed, and currently, it is determined based on a heuristic. The choice of RMC significantly affects the efficacy of the linearization process and, hence, the rapidity of finding the solution. In this paper, we propose a rule-based parameter-learning procedure to vary the RMC at each iteration, thereby significantly increasing the speed of determining the ultimate solution. To demonstrate the efficacy of the ALP algorithm with parameter learning (ALPPL), we use an industry-inspired problem, namely, the integrated design of a hot-rolling process chain for the production of a steel rod. Using the proposed ALPPL, we can incorporate domain expertise to identify the most relevant criteria to evaluate the performance of the linearization algorithm, quantify the criteria as evaluation indices, and tune the RMC to return the solutions that fall into the most desired range of each evaluation index. Compared with the old ALP algorithm using the golden section search to update the RMC, the ALPPL improves the algorithm by identifying the RMC values with better linearization performance without adding computational complexity. The insensitive region of the RMC is better explored using the ALPPL—the ALP only explores the insensitive region twice, whereas the ALPPL explores four times throughout the iterations. With ALPPL, we have a more comprehensive definition of linearization performance—given multiple design scenarios, using evaluation indices (EIs) including the statistics of deviations, the numbers of binding (active) constraints and bounds, the numbers of accumulated linear constraints, and the number of iterations. The desired range of evaluation indices (DEI) is also learned during the iterations. The RMC value that brings the most EIs into the DEI is returned as the best RMC, which ensures a balance between the accuracy of the linearization and the robustness of the solutions. For our test problem, the hot-rolling process chain, the ALP returns the best RMC in twelve iterations considering only the deviation as the linearization performance index, whereas the ALPPL returns the best RMC in fourteen iterations considering multiple EIs. The complexity of both the ALP and the ALPPL is O(n2). The parameter-learning steps can be customized to improve the parameter determination of other algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flllllll完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
张瑞雪完成签到,获得积分10
2秒前
hanyi完成签到 ,获得积分10
2秒前
2秒前
心灵美天奇完成签到 ,获得积分10
3秒前
3秒前
甜菜完成签到,获得积分20
3秒前
KXC完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
顾矜应助四十采纳,获得10
4秒前
fiercecila完成签到,获得积分10
4秒前
顺利滑板发布了新的文献求助10
4秒前
ZYCong发布了新的文献求助30
5秒前
5秒前
酷炫的尔丝完成签到 ,获得积分10
5秒前
w_发布了新的文献求助10
5秒前
隐形曼青应助hxx采纳,获得10
6秒前
lamer完成签到,获得积分10
6秒前
负责的惜文完成签到,获得积分10
7秒前
7秒前
Jaxine完成签到 ,获得积分10
7秒前
魏来完成签到,获得积分10
8秒前
月山发布了新的文献求助10
8秒前
curry应助欧子采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6.1应助熊熊阁采纳,获得10
9秒前
leo完成签到,获得积分10
10秒前
10秒前
liuking完成签到 ,获得积分10
10秒前
日月※城完成签到,获得积分10
11秒前
闫小天天完成签到,获得积分10
11秒前
DUBUYINKE完成签到,获得积分10
11秒前
12秒前
柏果发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766112
求助须知:如何正确求助?哪些是违规求助? 5563948
关于积分的说明 15411404
捐赠科研通 4900416
什么是DOI,文献DOI怎么找? 2636460
邀请新用户注册赠送积分活动 1584661
关于科研通互助平台的介绍 1539932