CLASH: Complementary Learning with Neural Architecture Search for Gait Recognition

轮廓 稳健性(进化) 计算机科学 人工智能 步态 像素 模式识别(心理学) 计算机视觉 生理学 生物化学 生物 基因 化学
作者
Huanzhang Dou,Pengyi Zhang,Yuhan Zhao,Lu Jin,Xi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tip.2024.3360870
摘要

Gait recognition, which aims at identifying individuals by their walking patterns, has achieved great success based on silhouette. The binary silhouette sequence encodes the walking pattern within the sparse boundary representation. Therefore, most pixels in the silhouette are under-sensitive to the walking pattern since the sparse boundary lacks dense spatial-temporal information, which is suitable to be represented with dense texture. To enhance the sensitivity to the walking pattern while maintaining the robustness of recognition, we present a Complementary Learning with neural Architecture SearcH (CLASH) framework, consisting of walking pattern sensitive gait descriptor named dense spatial-temporal field (DSTF) and neural architecture search based complementary learning (NCL). Specifically, DSTF transforms the representation from the sparse binary boundary into the dense distance-based texture, which is sensitive to the walking pattern at the pixel level. Further, NCL presents a task-specific search space for complementary learning, which mutually complements the sensitivity of DSTF and the robustness of the silhouette to represent the walking pattern effectively. Extensive experiments demonstrate the effectiveness of the proposed methods under both in-the-lab and in-the-wild scenarios. On CASIA-B, we achieve rank-1 accuracy of 98.8%, 96.5%, and 89.3% under three conditions. On OU-MVLP, we achieve rank-1 accuracy of 91.9%. Under the latest in-the-wild datasets, we outperform the latest silhouette-based methods by 16.3% and 19.7% on Gait3D and GREW, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
斯文败类应助高兴采纳,获得10
2秒前
SIMBA完成签到,获得积分10
2秒前
李爱国应助Joleneli100采纳,获得30
2秒前
3秒前
甜甜诗筠发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
CipherSage应助亲爱的融采纳,获得10
4秒前
思源应助黄宏旭采纳,获得10
4秒前
天天快乐应助迷龙采纳,获得10
5秒前
小琦无敌完成签到,获得积分10
5秒前
勤劳小蕾发布了新的文献求助10
5秒前
6秒前
巴顿将军发布了新的文献求助10
6秒前
小马甲应助aaaaaa采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
底层特律完成签到,获得积分10
7秒前
可爱的函函应助mmy采纳,获得10
7秒前
追寻的千儿完成签到,获得积分10
9秒前
qwer发布了新的文献求助10
9秒前
ALUCK完成签到,获得积分10
10秒前
背后的傥发布了新的文献求助50
10秒前
10秒前
Lucas应助虚幻采枫采纳,获得10
11秒前
我是弱智先帮我完成签到,获得积分10
11秒前
zcx完成签到 ,获得积分10
11秒前
11秒前
11秒前
Grayball完成签到,获得积分0
12秒前
14秒前
凉小远完成签到,获得积分10
14秒前
一一完成签到,获得积分10
14秒前
May发布了新的文献求助10
16秒前
orixero应助张朵朵采纳,获得10
16秒前
16秒前
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232930
求助须知:如何正确求助?哪些是违规求助? 3766339
关于积分的说明 11833644
捐赠科研通 3424826
什么是DOI,文献DOI怎么找? 1879509
邀请新用户注册赠送积分活动 932309
科研通“疑难数据库(出版商)”最低求助积分说明 839586