Smoke Recognition in Satellite Imagery via an Attention Pyramid Network With Bidirectional Multilevel Multigranularity Feature Aggregation and Gated Fusion

计算机科学 粒度 特征(语言学) 棱锥(几何) 人工智能 数据挖掘 模式识别(心理学) 哲学 语言学 物理 光学 操作系统
作者
Huanjie Tao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 14047-14057 被引量:6
标识
DOI:10.1109/jiot.2023.3339476
摘要

Mingyuan Ren, Xiuwen Fu, Pasquale Pace, Gianluca Aloi, and Giancarlo FortinoRecognizing smoke in satellite imagery is a critical approach in an Internet of Things (IoT) system for monitoring forest fires. However, the task remains challenging due to false alarms of smoke-like occurrences caused by complex land cover types, and missing detections caused by the diversity of fire smoke. Some reasons are that existing methods overlook attention granularity, neglect all-layer-based fusion of low-level features with high-level semantic information, and fail to address interferences arising from fusing different kinds of features. To solve these issues, this paper presents an attention pyramid network with bidirectional multi-level multi-granularity feature aggregation and gated fusion for smoke recognition. First, to guide the model sequentially extract multi-granularity smoke attention clues for complementary smoke perception, we design an attention-guided feature pyramid module by concatenating residual blocks and attention pyramid blocks. Second, to leverage both low-level fine-grained and high-level semantic features in all network layers, we design a bidirectional feature aggregation module using multi-level multi-granularity feature blocks. Finally, to selectively integrate the features with different resolutions and semantic levels to effectively achieve feature complementarity and avoid feature mutual interference, we design a gated feature fusion module using gated feature fusion blocks. The experimental results demonstrate that our model achieves an accuracy of 98.33% on the USTC-SmokeRS dataset. Additionally, on the E-USTC-SmokeRS dataset, our model achieves a detection rate of 94.92%, a false alarm rate of 3.00%, and an F1-score of 0.9553. These results surpass the performance of existing satellite-imagery-based smoke recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助流星雨采纳,获得10
2秒前
jszz应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
小离应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
简单完成签到 ,获得积分10
3秒前
4秒前
鑫渊发布了新的文献求助10
7秒前
8秒前
MaheshTiangong完成签到,获得积分10
8秒前
小希完成签到 ,获得积分10
9秒前
怕孤独的访云完成签到 ,获得积分10
9秒前
10秒前
12秒前
不倦应助why采纳,获得30
13秒前
流星雨发布了新的文献求助10
16秒前
Eason_C完成签到 ,获得积分10
17秒前
鑫渊完成签到,获得积分10
17秒前
mix完成签到,获得积分10
23秒前
阔达如柏完成签到,获得积分10
23秒前
wll1091完成签到 ,获得积分10
24秒前
24秒前
负责的寒梅完成签到 ,获得积分10
26秒前
Linly发布了新的文献求助10
27秒前
shinian完成签到 ,获得积分10
28秒前
29秒前
30秒前
star发布了新的文献求助10
30秒前
boymin2015完成签到 ,获得积分10
31秒前
35秒前
满意白卉完成签到 ,获得积分10
35秒前
Yynnn完成签到 ,获得积分10
36秒前
拼搏的白云完成签到,获得积分10
37秒前
轩辕剑身完成签到,获得积分0
40秒前
季夏完成签到 ,获得积分10
41秒前
tangli完成签到 ,获得积分10
41秒前
42秒前
善良班完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304275
求助须知:如何正确求助?哪些是违规求助? 4450880
关于积分的说明 13849976
捐赠科研通 4337819
什么是DOI,文献DOI怎么找? 2381673
邀请新用户注册赠送积分活动 1376668
关于科研通互助平台的介绍 1343751