Smoke Recognition in Satellite Imagery via an Attention Pyramid Network With Bidirectional Multilevel Multigranularity Feature Aggregation and Gated Fusion

计算机科学 粒度 特征(语言学) 棱锥(几何) 人工智能 数据挖掘 模式识别(心理学) 哲学 语言学 物理 光学 操作系统
作者
Huanjie Tao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 14047-14057 被引量:6
标识
DOI:10.1109/jiot.2023.3339476
摘要

Mingyuan Ren, Xiuwen Fu, Pasquale Pace, Gianluca Aloi, and Giancarlo FortinoRecognizing smoke in satellite imagery is a critical approach in an Internet of Things (IoT) system for monitoring forest fires. However, the task remains challenging due to false alarms of smoke-like occurrences caused by complex land cover types, and missing detections caused by the diversity of fire smoke. Some reasons are that existing methods overlook attention granularity, neglect all-layer-based fusion of low-level features with high-level semantic information, and fail to address interferences arising from fusing different kinds of features. To solve these issues, this paper presents an attention pyramid network with bidirectional multi-level multi-granularity feature aggregation and gated fusion for smoke recognition. First, to guide the model sequentially extract multi-granularity smoke attention clues for complementary smoke perception, we design an attention-guided feature pyramid module by concatenating residual blocks and attention pyramid blocks. Second, to leverage both low-level fine-grained and high-level semantic features in all network layers, we design a bidirectional feature aggregation module using multi-level multi-granularity feature blocks. Finally, to selectively integrate the features with different resolutions and semantic levels to effectively achieve feature complementarity and avoid feature mutual interference, we design a gated feature fusion module using gated feature fusion blocks. The experimental results demonstrate that our model achieves an accuracy of 98.33% on the USTC-SmokeRS dataset. Additionally, on the E-USTC-SmokeRS dataset, our model achieves a detection rate of 94.92%, a false alarm rate of 3.00%, and an F1-score of 0.9553. These results surpass the performance of existing satellite-imagery-based smoke recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lull完成签到,获得积分10
刚刚
1秒前
kirin完成签到,获得积分10
2秒前
2秒前
3秒前
斯文静竹发布了新的文献求助10
3秒前
4秒前
火华发布了新的文献求助10
5秒前
lhj发布了新的文献求助10
8秒前
薛定谔的猫完成签到,获得积分10
9秒前
POKKKK发布了新的文献求助10
9秒前
10秒前
10秒前
斯文静竹完成签到,获得积分10
10秒前
科研通AI5应助远方采纳,获得10
11秒前
13秒前
李爱国应助爱笑雨双采纳,获得10
13秒前
小y完成签到,获得积分10
14秒前
Ava应助今夜无人入眠采纳,获得10
14秒前
15秒前
菲菲发布了新的文献求助10
16秒前
18秒前
Draymond完成签到 ,获得积分10
21秒前
POKKKK完成签到,获得积分10
21秒前
酷波er应助城南花已开采纳,获得10
22秒前
科研欣路完成签到,获得积分10
23秒前
韩野发布了新的文献求助10
24秒前
懒羊羊完成签到 ,获得积分10
24秒前
27秒前
情怀应助哈哈Ye采纳,获得10
29秒前
31秒前
垃圾桶发布了新的文献求助10
33秒前
kkkkk完成签到,获得积分10
35秒前
35秒前
36秒前
chi完成签到,获得积分10
36秒前
爆米花应助文章多多采纳,获得10
37秒前
Jasper应助shais采纳,获得10
39秒前
ywongmath发布了新的文献求助10
39秒前
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803756
求助须知:如何正确求助?哪些是违规求助? 3348586
关于积分的说明 10339425
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682727
邀请新用户注册赠送积分活动 808390
科研通“疑难数据库(出版商)”最低求助积分说明 764096