亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Band CNN With Band-Dependent Kernels and Amalgamated Cross Entropy Loss for Motor Imagery Classification

计算机科学 卷积神经网络 模式识别(心理学) 人工智能 过度拟合 核(代数) 熵(时间箭头) 交叉熵 人工神经网络 数学 量子力学 组合数学 物理
作者
Jinhyo Shin,Wonzoo Chung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4466-4477 被引量:8
标识
DOI:10.1109/jbhi.2023.3292909
摘要

In this paper, we present a novel MI classification method based on multi-band convolutional neural network (CNN) with band-dependent kernel sizes, named MBK-CNN, to improve classification performance, by resolving the subject dependency issue of the widely used CNN-based approaches due to the kernel size optimization problem. The proposed structure exploits the frequency diversity of the EEG signals and simultaneously resolves the subject dependent kernel size issue. EEG signal is decomposed into overlapping multi-band and passed through multiple CNNs (termed 'branch-CNNs') with different kernel sizes to generate frequency dependent features, which are combined by a simple weighted sum. In contrast to the existing works where single-band multi-branch CNNs with different kernel sizes are used to resolve the subject dependency issue, a unique kernel size per frequency band is used. To prevent possible overfitting induced by a weighted sum, each branch-CNN is additionally trained by tentative cross entropy loss while overall network is optimized by the end-to-end cross entropy loss, which is named amalgamated cross entropy loss. In addition, we further propose multi-band CNN with enhanced spatial diversity, named MBK-LR-CNN, by replacing each branch-CNN with several sub branch-CNNs applied for channel subsets (termed 'local region') to improve the classification performance. We evaluated the performance of the proposed methods, MBK-CNN and MBK-LR-CNN, on publicly available datasets, BCI Competition IV dataset 2a and High Gamma Dataset. The experimental results confirm the performance improvement of the proposed methods compared to the currently existing MI classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪光的flash完成签到 ,获得积分10
3秒前
兜兜完成签到 ,获得积分10
6秒前
NexusExplorer应助光亮的曼香采纳,获得10
7秒前
头上有犄角bb完成签到 ,获得积分10
8秒前
高伟杰完成签到,获得积分10
9秒前
史前巨怪完成签到,获得积分10
9秒前
季刘杰完成签到 ,获得积分10
9秒前
10秒前
12秒前
哲000完成签到 ,获得积分10
15秒前
yxy104发布了新的文献求助10
16秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得80
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得30
19秒前
19秒前
19秒前
内向的火车完成签到 ,获得积分10
22秒前
老头大学习完成签到 ,获得积分10
22秒前
爱思考的小笨笨完成签到,获得积分10
23秒前
月亮完成签到,获得积分10
23秒前
cyanpomelo完成签到,获得积分10
24秒前
木子完成签到 ,获得积分10
25秒前
所所应助激昂的如柏采纳,获得30
27秒前
万能图书馆应助dkz采纳,获得10
31秒前
赘婿应助蛋挞好好吃采纳,获得10
31秒前
月亮发布了新的文献求助10
40秒前
45秒前
48秒前
49秒前
yqsf789发布了新的文献求助10
51秒前
dkz发布了新的文献求助10
55秒前
冥王星发布了新的文献求助10
56秒前
57秒前
白露完成签到 ,获得积分10
1分钟前
加菲丰丰完成签到,获得积分0
1分钟前
1分钟前
霡霂发布了新的文献求助10
1分钟前
1分钟前
xiaofang完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291069
求助须知:如何正确求助?哪些是违规求助? 4442222
关于积分的说明 13829543
捐赠科研通 4325186
什么是DOI,文献DOI怎么找? 2374028
邀请新用户注册赠送积分活动 1369382
关于科研通互助平台的介绍 1333523