数学
有界函数
领域(数学分析)
欧米茄
双调和方程
双曲线
球(数学)
环空(植物学)
能量(信号处理)
边界(拓扑)
组合数学
紧凑空间
数学分析
数学物理
Neumann边界条件
边值问题
几何学
物理
量子力学
统计
生物
植物
作者
Angela Pistoia,Delia Schiera,Hugo Tavares
摘要
Abstract We study the following Lane–Emden system: $$\begin{align*} & -\Delta u=|v|^{q-1}v \quad \ \textrm{in}\ \Omega, \qquad -\Delta v=|u|^{p-1}u \quad \ \textrm{in}\ \Omega, \qquad u_{\nu}=v_{\nu}=0 \quad \ \textrm{on}\ \partial \Omega, \end{align*}$$with $\Omega $ a bounded regular domain of ${\mathbb{R}}^{N}$, $N \ge 4$, and exponents $p, q$ belonging to the so-called critical hyperbola $1/(p+1)+1/(q+1)=(N-2)/N$. We show that, under suitable conditions on $p, q$, least-energy (sign-changing) solutions exist, and they are classical. In the proof we exploit a dual variational formulation, which allows to deal with the strong indefinite character of the problem. We establish a compactness condition which is based on a new Cherrier-type inequality. We then prove such condition by using as test functions the solutions to the system in the whole space and performing delicate asymptotic estimates. If $N \ge 5$, $p=1$, the system above reduces to a biharmonic equation, for which we also prove existence of least-energy solutions. Finally, we prove some partial symmetry and symmetry-breaking results in the case $\Omega $ is a ball or an annulus.
科研通智能强力驱动
Strongly Powered by AbleSci AI