Machine learning-based prediction of delirium 24 h after pediatric intensive care unit admission in critically ill children: A prospective cohort study

谵妄 医学 前瞻性队列研究 儿科重症监护室 队列 病危 接收机工作特性 重症监护室 急诊医学 队列研究 儿科 重症监护医学 内科学
作者
Lei Lei,Shuai Zhang,Lin Yang,Cheng Yang,Zhangqin Liu,Hao Xu,Shaoyu Su,Xingli Wan,Min Xu
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:146: 104565-104565 被引量:13
标识
DOI:10.1016/j.ijnurstu.2023.104565
摘要

Accurately identifying patients at high risk of delirium is vital for timely preventive intervention measures. Approaches for identifying the risk of developing delirium among critically ill children are not well researched.To develop and validate machine learning-based models for predicting delirium among critically ill children 24 h after pediatric intensive care unit (PICU) admission.A prospective cohort study.A large academic medical center with a 57-bed PICU in southwestern China from November 2019 to February 2022.One thousand five hundred and seventy-six critically ill children requiring PICU stay over 24 h.Five machine learning algorithms were employed. Delirium was screened by bedside nurses twice a day using the Cornell Assessment of Pediatric Delirium. Twenty-four clinical features from medical and nursing records during hospitalization were used to inform the models. Model performance was assessed according to numerous learning metrics, including the area under the receiver operating characteristic curve (AUC).Of the 1576 enrolled patients, 929 (58.9 %) were boys, and the age ranged from 28 days to 15 years with a median age of 12 months (IQR 3 to 60 months). Among them, 1126 patients were assigned to the training cohort, and 450 were assigned to the validation cohort. The AUCs ranged from 0.763 to 0.805 for the five models, among which the eXtreme Gradient Boosting (XGB) model performed best, achieving an AUC of 0.805 (95 % CI, 0.759-0.851), with 0.798 (95 % CI, 0.758-0.834) accuracy, 0.902 sensitivity, 0.839 positive predictive value, 0.640 F1-score and a Brier score of 0.144. Almost all models showed lower predictive performance in children younger than 24 months than in older children. The logistic regression model also performed well, with an AUC of 0.789 (95 % CI, 0.739, 0.838), just under that of the XGB model, and was subsequently transformed into a nomogram.Machine learning-based models can be established and potentially help identify critically ill children who are at high risk of delirium 24 h after PICU admission. The nomogram may be a beneficial management tool for delirium for PICU practitioners at present.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腼腆的恶天完成签到,获得积分10
刚刚
bronny发布了新的文献求助10
刚刚
1秒前
5年科研3年毕业完成签到,获得积分10
1秒前
义气的凡灵完成签到,获得积分10
2秒前
hhj完成签到,获得积分10
2秒前
2秒前
lgj666发布了新的文献求助10
3秒前
3秒前
4秒前
胡胡胡发布了新的文献求助10
5秒前
学术芽完成签到,获得积分10
5秒前
why发布了新的文献求助10
7秒前
哈哈镜阿姐完成签到,获得积分10
7秒前
思源应助夏尔采纳,获得10
8秒前
清秀凉面完成签到 ,获得积分10
8秒前
韩soso完成签到,获得积分10
8秒前
爆米花应助沉静胜采纳,获得10
8秒前
9秒前
9秒前
对你如初完成签到,获得积分10
10秒前
高贵的小熊猫完成签到,获得积分10
10秒前
华仔应助yun采纳,获得30
12秒前
12秒前
13秒前
SYLH应助zzw54188采纳,获得10
15秒前
激昂的如柏完成签到,获得积分10
15秒前
16秒前
星辰大海应助胡胡胡采纳,获得10
16秒前
乐观小之应助依妍采纳,获得10
16秒前
DKN完成签到,获得积分10
17秒前
李健应助邓代容采纳,获得10
17秒前
bronny完成签到,获得积分10
18秒前
linkman发布了新的文献求助10
20秒前
等待的绿旋完成签到,获得积分10
20秒前
沉静胜发布了新的文献求助10
21秒前
junjun发布了新的文献求助10
22秒前
22秒前
依妍完成签到,获得积分10
22秒前
vv完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938864
求助须知:如何正确求助?哪些是违规求助? 3484632
关于积分的说明 11029082
捐赠科研通 3214478
什么是DOI,文献DOI怎么找? 1776765
邀请新用户注册赠送积分活动 862996
科研通“疑难数据库(出版商)”最低求助积分说明 798629