XSimGCL: Towards Extremely Simple Graph Contrastive Learning for Recommendation

计算机科学 二部图 图形 情报检索 人工智能 人气 一致性(知识库) 自然语言处理 理论计算机科学 心理学 社会心理学
作者
Junliang Yu,Xin Xia,Tong Chen,Lizhen Cui,Quoc Viet Hung Nguyen,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:152
标识
DOI:10.1109/tkde.2023.3288135
摘要

Contrastive learning (CL) has recently been demonstrated critical in improving recommendation performance. The underlying principle of CL-based recommendation models is to ensure the consistency between representations derived from different graph augmentations of the user-item bipartite graph. This self-supervised approach allows for the extraction of general features from raw data, thereby mitigating the issue of data sparsity. Despite the effectiveness of this paradigm, the factors contributing to its performance gains have yet to be fully understood. This paper provides novel insights into the impact of CL on recommendation. Our findings indicate that CL enables the model to learn more evenly distributed user and item representations, which alleviates the prevalent popularity bias and promoting long-tail items. Our analysis also suggests that the graph augmentations, previously considered essential, are relatively unreliable and of limited significance in CL-based recommendation. Based on these findings, we put forward an e X tremely Sim ple G raph C ontrastive L earning method ( XSimGCL ) for recommendation, which discards the ineffective graph augmentations and instead employs a simple yet effective noise-based embedding augmentation to generate views for CL. A comprehensive experimental study on four large and highly sparse benchmark datasets demonstrates that, though the proposed method is extremely simple, it can smoothly adjust the uniformity of learned representations and outperforms its graph augmentation-based counterparts by a large margin in both recommendation accuracy and training efficiency. The code and used datasets are released at https://github.com/Coder-Yu/SELFRec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助2134165采纳,获得10
刚刚
1秒前
1秒前
苹果派完成签到 ,获得积分10
2秒前
LIANG发布了新的文献求助10
3秒前
小二郎应助Ice_zhao采纳,获得10
4秒前
5秒前
syn发布了新的文献求助10
6秒前
充电宝应助ning采纳,获得10
7秒前
量子星尘发布了新的文献求助30
7秒前
Licy发布了新的文献求助10
8秒前
研友_VZG7GZ应助zyx采纳,获得10
9秒前
所所应助Alone采纳,获得10
13秒前
14秒前
圆锥香蕉发布了新的文献求助200
14秒前
Sakura完成签到,获得积分10
17秒前
19秒前
ree完成签到 ,获得积分10
19秒前
小恶于发布了新的文献求助10
20秒前
等等发布了新的文献求助10
20秒前
21秒前
Yanalee应助Enoch采纳,获得10
22秒前
chsdpolos发布了新的文献求助10
22秒前
123给123的求助进行了留言
23秒前
niu完成签到,获得积分10
23秒前
24秒前
还没想好完成签到,获得积分10
24秒前
zyx发布了新的文献求助10
25秒前
mz完成签到 ,获得积分10
25秒前
25秒前
生生发布了新的文献求助10
26秒前
29秒前
30秒前
bian发布了新的文献求助10
30秒前
31秒前
ddd发布了新的文献求助10
34秒前
chsdpolos完成签到,获得积分10
34秒前
2134165发布了新的文献求助10
34秒前
Alone发布了新的文献求助10
36秒前
37秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291599
求助须知:如何正确求助?哪些是违规求助? 3818565
关于积分的说明 11957796
捐赠科研通 3461990
什么是DOI,文献DOI怎么找? 1898907
邀请新用户注册赠送积分活动 947370
科研通“疑难数据库(出版商)”最低求助积分说明 850106