亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigating the influence of streetscape environmental characteristics on pedestrian crashes at intersections using street view images and explainable machine learning

行人 运输工程 计算机科学 人工智能 工程类
作者
Han Yue
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:205: 107693-107693 被引量:35
标识
DOI:10.1016/j.aap.2024.107693
摘要

Examining the relationship between streetscape features and road traffic accidents is pivotal for enhancing roadway safety. While previous studies have primarily focused on the influence of street design characteristics, sociodemographic features, and land use features on crash occurrence, the impact of streetscape features on pedestrian crashes has not been thoroughly investigated. Furthermore, while machine learning models demonstrate high accuracy in prediction and are increasingly utilized in traffic safety research, understanding the prediction results poses challenges. To address these gaps, this study extracts streetscape environment characteristics from street view images (SVIs) using a combination of semantic segmentation and object detection deep learning networks. These characteristics are then incorporated into the eXtreme Gradient Boosting (XGBoost) algorithm, along with a set of control variables, to model the occurrence of pedestrian crashes at intersections. Subsequently, the SHapley Additive exPlanations (SHAP) method is integrated with XGBoost to establish an interpretable framework for exploring the association between pedestrian crash occurrence and the surrounding streetscape built environment. The results are interpreted from global, local, and regional perspectives. The findings indicate that, from a global perspective, traffic volume and commercial land use are significant contributors to pedestrian-vehicle collisions at intersections, while road, person, and vehicle elements extracted from SVIs are associated with higher risks of pedestrian crash onset. At a local level, the XGBoost-SHAP framework enables quantification of features' local contributions for individual intersections, revealing spatial heterogeneity in factors influencing pedestrian crashes. From a regional perspective, similar intersections can be grouped to define geographical regions, facilitating the formulation of spatially responsive strategies for distinct regions to reduce traffic accidents. This approach can potentially enhance the quality and accuracy of local policy making. These findings underscore the underlying relationship between streetscape-level environmental characteristics and vehicle-pedestrian crashes. The integration of SVIs and deep learning techniques offers a visually descriptive portrayal of the streetscape environment at locations where traffic crashes occur at eye level. The proposed framework not only achieves excellent prediction performance but also enhances understanding of traffic crash occurrences, offering guidance for optimizing traffic accident prevention and treatment programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
且问春风发布了新的文献求助10
10秒前
10秒前
胡明轩完成签到 ,获得积分10
10秒前
lzl008完成签到 ,获得积分10
11秒前
流沙无言完成签到 ,获得积分10
14秒前
16秒前
21秒前
情怀应助hhhpass采纳,获得10
26秒前
27秒前
lzl007完成签到 ,获得积分10
27秒前
希望天下0贩的0应助tong采纳,获得10
28秒前
体贴花卷发布了新的文献求助10
32秒前
李健的小迷弟应助汪咏采纳,获得20
36秒前
完美世界应助体贴花卷采纳,获得10
38秒前
ybk666完成签到,获得积分10
47秒前
lutuantuan应助cenghao采纳,获得50
48秒前
可爱的函函应助佛光辉采纳,获得10
49秒前
51秒前
ly完成签到,获得积分10
52秒前
12A完成签到,获得积分10
54秒前
粥粥完成签到,获得积分20
54秒前
桐桐应助鲸医生采纳,获得10
55秒前
56秒前
粥粥发布了新的文献求助10
57秒前
阳光大山完成签到 ,获得积分10
1分钟前
含蓄又亦发布了新的文献求助10
1分钟前
Lucas应助佛光辉采纳,获得10
1分钟前
OLaLa完成签到,获得积分10
1分钟前
且问春风发布了新的文献求助10
1分钟前
雨青完成签到 ,获得积分10
1分钟前
111发布了新的文献求助10
1分钟前
传奇3应助baoziya采纳,获得10
1分钟前
夜阑卧听完成签到,获得积分0
1分钟前
1分钟前
orixero应助佛光辉采纳,获得10
1分钟前
汪咏完成签到,获得积分20
1分钟前
1分钟前
传奇3应助粥粥采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627771
求助须知:如何正确求助?哪些是违规求助? 4714752
关于积分的说明 14963143
捐赠科研通 4785543
什么是DOI,文献DOI怎么找? 2555174
邀请新用户注册赠送积分活动 1516500
关于科研通互助平台的介绍 1476926