亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Flat Minima for Domain Generalization With Large Learning Rates

最大值和最小值 计算机科学 过度拟合 人工智能 一般化 算法 机器学习 收敛速度 模式识别(心理学) 数学 人工神经网络 频道(广播) 数学分析 计算机网络
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 6145-6158 被引量:6
标识
DOI:10.1109/tkde.2024.3392980
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
wanci应助RC采纳,获得10
12秒前
wq完成签到 ,获得积分10
16秒前
韩明佐完成签到 ,获得积分20
16秒前
科研通AI2S应助温婉的不弱采纳,获得10
17秒前
RC关闭了RC文献求助
22秒前
38秒前
RC发布了新的文献求助10
48秒前
53秒前
思源应助科研通管家采纳,获得10
53秒前
无花果应助科研通管家采纳,获得10
53秒前
55秒前
赘婿应助上官采纳,获得10
57秒前
共享精神应助上官采纳,获得10
57秒前
Ava应助上官采纳,获得10
57秒前
香蕉觅云应助上官采纳,获得10
57秒前
FashionBoy应助上官采纳,获得10
57秒前
隐形曼青应助上官采纳,获得10
57秒前
酷波er应助上官采纳,获得10
57秒前
希望天下0贩的0应助上官采纳,获得10
57秒前
orixero应助上官采纳,获得10
57秒前
大模型应助上官采纳,获得10
57秒前
科研通AI6应助飘逸的半邪采纳,获得10
1分钟前
1分钟前
liu发布了新的文献求助10
1分钟前
1分钟前
bkagyin应助开拖拉机的芍药采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助sandaomi采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
胡胡胡发布了新的文献求助10
2分钟前
sandaomi发布了新的文献求助10
2分钟前
2分钟前
无风发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590496
求助须知:如何正确求助?哪些是违规求助? 4674768
关于积分的说明 14795246
捐赠科研通 4632330
什么是DOI,文献DOI怎么找? 2532775
邀请新用户注册赠送积分活动 1501293
关于科研通互助平台的介绍 1468634