MBFormer-YOLO: Multibranch Adaptive Spatial Feature Detection Network for Small Infrared Object Detection

目标检测 特征(语言学) 人工智能 计算机科学 计算机视觉 骨干网 红外线的 块(置换群论) 假警报 恒虚警率 模式识别(心理学) 特征提取 物理 光学 哲学 几何学 语言学 数学 计算机网络
作者
Xiao Luo,Shaojuan Luo,Meiyun Chen,Genping Zhao,Chunhua He,Heng Wu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 19517-19530 被引量:2
标识
DOI:10.1109/jsen.2024.3394956
摘要

Infrared thermal imaging technology that has unique advantages in obtaining target information at night and in harsh weather conditions has been widely used in the military, security, environmental monitoring, and other fields. Existing visible light object detection methods often face challenges of high false alarm rates and low accuracy when detecting small infrared objects. Moreover, current small infrared object detection methods mostly require much detailed annotation data, and it is challenging to visually depict the positions of small targets on the original complex background images. To address these issues, we propose a multi-branch backbone and adaptive spatial feature fusion detection head-based YOLO network called MBFormer-YOLO to achieve the high-accuracy detection of small infrared targets. We design a multi-branch backbone with structural re-parameterization capability called MBFormer, which has strong capabilities to fit object features. In the neck part, MBFormer-YOLO utilizes convolutional block attention modules and C3-SwinTransformer modules to suppress noise and redundant information. We develop a 4-level adaptive spatial feature fusion detection head to improve the detection accuracy of the proposed network. Many experiments are conducted on the SIRST-V2 dataset to validate the effectiveness of MBFormer-YOLO. The results show that MBFormer-YOLO achieves an 11.3% increase in AP50 and 2% in AP50-95 over the baseline model YOLOv8n and surpasses other advanced object detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彦嘉完成签到,获得积分20
刚刚
Alma完成签到,获得积分10
刚刚
乐观的忆枫完成签到,获得积分10
1秒前
意志所向发布了新的文献求助10
1秒前
优秀发布了新的文献求助30
1秒前
栩栩发布了新的文献求助10
1秒前
DD完成签到,获得积分20
2秒前
Lucas应助Alice采纳,获得10
2秒前
2秒前
唐皮皮发布了新的文献求助10
2秒前
隐形曼青应助PMY采纳,获得10
3秒前
彦嘉发布了新的文献求助30
4秒前
4秒前
danrushui777完成签到,获得积分10
4秒前
mojito完成签到 ,获得积分10
4秒前
ekko完成签到,获得积分10
4秒前
甜美鹤发布了新的文献求助10
4秒前
丘比特应助applelpypies采纳,获得10
5秒前
上官若男应助yanziwu94采纳,获得10
5秒前
5秒前
郑偏偏完成签到,获得积分10
5秒前
Calvin完成签到,获得积分10
5秒前
5秒前
万能图书馆应助Yimi采纳,获得10
6秒前
6秒前
香蕉觅云应助DYY采纳,获得10
6秒前
aaabbb完成签到,获得积分10
6秒前
未肖肖发布了新的文献求助10
6秒前
呼啦的菜菜完成签到 ,获得积分10
6秒前
WilliamJarvis完成签到 ,获得积分10
7秒前
7秒前
XinH完成签到,获得积分10
7秒前
干净又晴完成签到,获得积分10
7秒前
徐徐徐完成签到,获得积分10
8秒前
隐形曼青应助小杨采纳,获得10
8秒前
zunzun完成签到,获得积分10
8秒前
jackmilton完成签到,获得积分10
9秒前
sdniuidifod发布了新的文献求助10
9秒前
JaneChen完成签到,获得积分10
9秒前
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796310
求助须知:如何正确求助?哪些是违规求助? 3341256
关于积分的说明 10305642
捐赠科研通 3057817
什么是DOI,文献DOI怎么找? 1677946
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762759