Misalignment-Resistant Deep Unfolding Network for multi-modal MRI super-resolution and reconstruction

模态(人机交互) 稳健性(进化) 情态动词 计算机视觉 人工神经网络 迭代重建 计算机科学 深度学习 人工智能 代表(政治) 模式识别(心理学) 高分子化学 生物化学 化学 基因 政治 政治学 法学
作者
Jinbao Wei,Gang Yang,Zhijie Wang,Yu Liu,Aiping Liu,Xun Chen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:296: 111866-111866
标识
DOI:10.1016/j.knosys.2024.111866
摘要

Multi-modal Magnetic Resonance Imaging (MRI) super-resolution (SR) and reconstruction aims to obtain a high-quality target image from corresponding sparsely sampled signals under the guidance of a reference image. However, existing techniques typically assume that the input multi-modal MR images are well aligned, which is challenging to achieve in clinical practice. This naive assumption has made their algorithms vulnerable to misalignment scenarios. Moreover, they often neglect many non-local common characteristics within and between modalities. In this work, we proposed a MisAlignment-Resistant Deep Unfolding Network (MAR-DUN) embedded in the tailored gradient descent module (GDM) and proximal mapping module (PMM) for multi-modal MRI SR and reconstruction. In the GDM, we employ an adaptive step-size sub-network (ASS-Net) to enhance the texture representation capacity of the proposed MAR-DUN. Furthermore, in the PMM, we propose a cross-modality non-local module (CNLM) featuring the inverse deformation layer (IDL). The IDL aligns features between the target and reference images by adaptively learning their spatial transformations, thus enhancing the robustness of the proposed network and allowing the CNLM to further explore the cross-modality non-local characteristics. On the other hand, the proposed CNLM aims to establish both the intra-modality and inter-modality non-local dependencies for fully exploiting the correlations between the target and reference images. Extensive experimental results show that our proposed method consistently achieves state-of-the-art reconstruction performance in alignment and misalignment scenarios, demonstrating its significant promise for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_841KWL完成签到,获得积分10
刚刚
津津乐道完成签到,获得积分10
1秒前
爱学习的小白完成签到 ,获得积分10
1秒前
简单花花完成签到,获得积分10
2秒前
醉熏的水绿完成签到 ,获得积分10
2秒前
陆小齐完成签到,获得积分10
2秒前
xiaohua发布了新的文献求助10
2秒前
Zbmd完成签到,获得积分10
2秒前
3秒前
乐乐应助朴素代芙采纳,获得10
3秒前
4秒前
cqyyy完成签到 ,获得积分10
4秒前
4秒前
5秒前
时差发布了新的文献求助10
5秒前
6秒前
6秒前
keyanbaby完成签到,获得积分10
6秒前
7秒前
7秒前
105度余温完成签到,获得积分10
8秒前
DQ发布了新的文献求助10
9秒前
enen发布了新的文献求助10
9秒前
懒癌晚期完成签到,获得积分10
9秒前
糊涂的元珊完成签到 ,获得积分10
9秒前
10秒前
xiaohua完成签到,获得积分10
10秒前
黄道婆完成签到 ,获得积分10
10秒前
11秒前
等待的花卷完成签到,获得积分20
11秒前
科学家发布了新的文献求助10
11秒前
脑洞疼应助Mastar采纳,获得10
11秒前
杨杨完成签到,获得积分20
11秒前
Surface完成签到 ,获得积分10
11秒前
12秒前
12秒前
混吃等死研究生完成签到,获得积分10
13秒前
落后晓蓝发布了新的文献求助10
13秒前
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841198
求助须知:如何正确求助?哪些是违规求助? 3383176
关于积分的说明 10528587
捐赠科研通 3103166
什么是DOI,文献DOI怎么找? 1709180
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773733