Comparative assessment of common pre-trained CNNs for vision-based surface defect detection of machined components

卷积神经网络 混淆矩阵 人工智能 计算机科学 混乱 模式识别(心理学) 人工神经网络 图像(数学) 吞吐量 机器视觉 机器学习 精神分析 心理学 电信 无线
作者
Swarit Anand Singh,Aitha Sudheer Kumar,K. A. Desai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:218: 119623-119623 被引量:50
标识
DOI:10.1016/j.eswa.2023.119623
摘要

Small and Medium Enterprises (SMEs) and Micro, Small, and Medium Enterprises (MSMEs) contemplate integrating machine vision with high throughput manufacturing lines to ensure a consistent quality of standardized components. The inspection productivity can improve considerably by substituting machine vision with manual activities. The pre-trained Convolutional Neural Networks (CNNs) can facilitate enhanced machine vision capabilities compared to the rule-based classical image processing algorithms. However, the non-availability of labeled datasets and lack of expertise in model development restricts their utilities for SMEs and MSMEs. The present work examines the practicality of utilizing publicly available labeled datasets while developing surface defect detection algorithms using pre-trained CNNs considering case studies of typical machined components - flat washers and tapered rollers. It is shown that the publicly available surface defect datasets are ineffective for specific-case such as machined surfaces of flat washers and tapered rollers. The explicitly labeled image datasets can offer better prediction abilities in such cases. A comparative assessment of common pre-trained CNNs is conducted to identify an appropriate network while developing a surface defect detection framework for machined components. The common pre-trained CNNs VGG-19, GoogLeNet, ResNet-50, EfficientNet-b0, and DenseNet-201 showing prediction abilities for similar classification tasks have been examined. The pre-trained CNNs developed using explicit image datasets were implemented to segregate defective flat washers and tapered rollers as sample components manufactured by SMEs and MSMEs. The performance assessment was accomplished using parameters estimated from the confusion matrix. It is observed that EfficientNet-b0 outperforms other networks on most parameters, and it can be preferred while developing a surface defect detection algorithm. The outcomes of the present study form the basis for developing an integrated vision-based expert system for surface defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
00完成签到,获得积分10
2秒前
风汐5423完成签到,获得积分10
4秒前
早早完成签到,获得积分10
4秒前
稳重夜绿发布了新的文献求助10
5秒前
Owen应助hjx采纳,获得30
5秒前
5秒前
正直觅云完成签到,获得积分10
8秒前
guohong完成签到,获得积分10
9秒前
悦悦发布了新的文献求助10
10秒前
科研通AI5应助tdtk采纳,获得10
15秒前
儒雅一凤完成签到 ,获得积分10
16秒前
17秒前
飘逸锦程完成签到 ,获得积分10
19秒前
Hello应助金熙美采纳,获得10
19秒前
21秒前
DDDD发布了新的文献求助30
21秒前
Kate发布了新的文献求助10
22秒前
瓦罐汤完成签到 ,获得积分10
23秒前
小巧安南完成签到,获得积分10
26秒前
26秒前
jyy发布了新的文献求助20
28秒前
29秒前
自信谷冬完成签到,获得积分10
31秒前
文静的紫萱完成签到 ,获得积分10
32秒前
莫道桑榆完成签到,获得积分10
32秒前
研友_VZG7GZ应助Kate采纳,获得10
34秒前
金熙美发布了新的文献求助10
35秒前
37秒前
waa完成签到,获得积分10
40秒前
赘婿应助纯真黄蜂采纳,获得10
40秒前
haofan17完成签到,获得积分10
41秒前
所所应助小巧安南采纳,获得10
41秒前
42秒前
心灵美绝施完成签到,获得积分10
42秒前
YY发布了新的文献求助10
43秒前
zoro应助金熙美采纳,获得10
45秒前
端庄的蜗牛完成签到,获得积分10
46秒前
47秒前
panbaobao完成签到,获得积分10
47秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779823
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222188
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758552