Recognition of Parkinson's disease and Parkinson's dementia based on gait analysis and machine learning

支持向量机 帕金森病 步态 随机森林 人工智能 步态分析 机器学习 特征选择 痴呆 计算机科学 物理医学与康复 特征(语言学) 疾病 医学 内科学 哲学 语言学
作者
Shuai Tao,Yi Wang,Huaying Cai,Zeping Lv,Liwen Kong,Wen Lv
标识
DOI:10.1117/12.2660808
摘要

Parkinson's disease (PD) is a common neurodegenerative disease, with a high probability of Parkinson's disease dementia (PDD) in patients with intermediate and advanced PD. Gait disorders and cognitive disorders are common symptoms of PD patients and PDD patients. It is of great clinical significance to identify healthy elderly (HC), PD patients and PDD patients with gait characteristics under cognitive tasks. This study found that stride length, toe-off angle and heel-strike angle are important gait markers for identifying HC and PD as well as HC and PDD. Gait characteristics of multiple 7 task gait consumption can preliminarily identify PD and PDD. The gait features under multiple 7 task were used as input variables of machine learning, and the classification model was modeled by training random forest (RF) and support vector machine (SVM), and the accuracy of machine learning classification was evaluated by using the five-fold cross-validation method. The results found that the classification accuracy of all machine learning can reach more than 80%, and RF has a better classification effect. To further improve the recognition accuracy, this paper introduces recursive feature elimination (RFE) for important feature selection. By screening important features, it is found that the accuracy and AUC value of machine learning are improved to a certain extent. The highest classification accuracy of HC and PD is 91.25%, and the AUC value is 0.9127. The classification accuracy of HC and PDD was up to 97.5%, and the AUC value was 0.95. These findings have important application value for clinical diagnosis of PD and PDD. It also paves the way for a better understanding of the utility of machine learning techniques to support clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
c123完成签到 ,获得积分10
1秒前
enen发布了新的文献求助50
2秒前
Leslie发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
自由的思枫完成签到,获得积分10
5秒前
6秒前
脑洞疼应助Estrella采纳,获得10
6秒前
yuanfangyi0306完成签到,获得积分10
7秒前
科研通AI5应助无辜的夏兰采纳,获得10
7秒前
8秒前
martina发布了新的文献求助10
9秒前
9秒前
ZYSNNNN发布了新的文献求助50
9秒前
Jervis完成签到 ,获得积分10
10秒前
10秒前
11秒前
天马行空发布了新的文献求助10
12秒前
FashionBoy应助SSSS采纳,获得10
13秒前
zwg完成签到,获得积分10
13秒前
爆杀小白鼠完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
23xyke发布了新的文献求助10
15秒前
失眠煎饼发布了新的文献求助10
15秒前
16秒前
ZYSNNNN完成签到,获得积分10
17秒前
科研通AI6应助wyt1239012采纳,获得10
19秒前
科研通AI2S应助lucas采纳,获得10
19秒前
唐泽雪穗发布了新的文献求助40
19秒前
南歌子发布了新的文献求助10
20秒前
21秒前
yuuu发布了新的文献求助10
21秒前
阿冰完成签到,获得积分10
21秒前
赘婿应助lucky采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4727097
求助须知:如何正确求助?哪些是违规求助? 4083945
关于积分的说明 12631050
捐赠科研通 3790469
什么是DOI,文献DOI怎么找? 2093345
邀请新用户注册赠送积分活动 1119177
科研通“疑难数据库(出版商)”最低求助积分说明 995438