MCC-Net: A class attention-enhanced multi-scale model for internal structure segmentation of rice seedling stem

分割 苗木 人工智能 模式识别(心理学) 像素 特征(语言学) 计算机科学 比例(比率) 数学 农学 生物 地理 地图学 语言学 哲学
作者
Minhui Chen,Juan Liao,Dequan Zhu,Huiyu Zhou,Yu Zou,Shun Zhang,Lu Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:207: 107717-107717 被引量:5
标识
DOI:10.1016/j.compag.2023.107717
摘要

Internal structural parameters of rice seedling stems are of great significance for rice growth detection, rice selection, breeding, and damage examination. Aiming at the problems of non-repeatability and low detection accuracy in the existing plant internal structure phenotypic traits detection methods, this paper presents a non-destructive segmentation method for examining the internal structure of rice seedling stems based on deep learning. We use a standard X-ray CT imaging technology to obtain non-destructive tomographic images of rice seedling stems and then design a class attention-enhanced multi-scale segmentation model (MCC-Net), where UNet is used as the backbone network. Specifically, the proposed MCC-Net mainly consists of three core components: multi-scale convolutional block (MCB), coordinate spatial attention (CSA) module, and class attention enhancement (CAE) module. MCB is the main component of the encoder to improve the feature extraction ability of the model for regions of different sizes in the internal structure. CSA is embedded into the UNet skip connections to enhance the expression of effective features and automatically locate the regions with different structures of rice seedling stems. CAE is designed to calculate the dependencies between image pixels and categories, which can enhance the feature expression from the perspective of categories and correct the category errors in the segmentation results. The experimental results show that MIOU, average dice coefficient and average precision of our proposed MCC-Net model on the self-built rice seedling stem CT image dataset are 92.56%, 96.33% and 96.59% respectively. Compared with several state of the art models, the proposed model achieves better segmentation performance on the rice seedling stem CT image dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hooo发布了新的文献求助10
刚刚
刚刚
东原角完成签到 ,获得积分20
1秒前
ttttt完成签到,获得积分10
1秒前
瘦瘦店员发布了新的文献求助10
1秒前
2秒前
钵钵鸡完成签到 ,获得积分10
2秒前
MchemG应助wodeqiche2007采纳,获得30
2秒前
2秒前
103921wjk发布了新的文献求助10
3秒前
xiewuhua发布了新的文献求助10
3秒前
快乐的雨竹完成签到,获得积分10
3秒前
3秒前
雪蛤完成签到,获得积分10
3秒前
沐启发布了新的文献求助20
4秒前
lililili完成签到,获得积分10
4秒前
彭于晏应助稳重向南采纳,获得10
4秒前
coolkid应助gh采纳,获得20
4秒前
搜集达人应助ttttt采纳,获得10
5秒前
再慕发布了新的文献求助10
6秒前
6秒前
小马甲应助lh采纳,获得10
6秒前
落后以旋发布了新的文献求助10
6秒前
悠然发布了新的文献求助10
7秒前
8秒前
科研小菜鸟i完成签到,获得积分10
8秒前
8秒前
9秒前
酷炫翠桃举报Jock求助涉嫌违规
9秒前
英俊的铭应助贺岚采纳,获得10
10秒前
LI电池完成签到,获得积分20
10秒前
ggyy完成签到,获得积分20
11秒前
aaron9898完成签到,获得积分10
11秒前
小狗完成签到 ,获得积分10
11秒前
杨桃完成签到,获得积分10
12秒前
水蜜桃关注了科研通微信公众号
12秒前
刘振岁发布了新的文献求助10
12秒前
xiewuhua完成签到,获得积分10
12秒前
seemeflykoo完成签到 ,获得积分10
12秒前
NexusExplorer应助小兔子采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
有机化学图表解 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717