Convolutional Neural Network–Aided Temperature Field Reconstruction: An Innovative Method for Advanced Reactor Monitoring

计算流体力学 卷积神经网络 计算机科学 核工程 核反应堆 温度测量 航程(航空) 领域(数学) 人工神经网络 热的 不连续性分类 熔盐 功率(物理) 工作(物理) 模拟 集合(抽象数据类型) 核电站 试验装置 温度控制 核能 流量(数学) 环境科学 机械工程 算法 核燃料 时域 热工水力学 试验数据 领域(数学分析) 轻水反应堆 编码(集合论) 化学反应器 测试用例 计算科学 卷积(计算机科学) 反应堆压力容器 大气温度范围 源代码 数据集 任务(项目管理)
作者
Victor Coppo Leite,Elia Merzari,Roberto Ponciroli,Lander Ibarra
出处
期刊:Nuclear Technology [Taylor & Francis]
卷期号:209 (5): 645-666 被引量:11
标识
DOI:10.1080/00295450.2022.2151822
摘要

In this study, the capabilities of a physics-informed convolutional neural network (CNN) for reconstructing the temperature field from a limited set of measurements taken at the boundaries of internal flows are demonstrated. Such an approach enables the development of less invasive monitoring methods for real-time plant diagnostics. As a test case, a Molten Salt Fast Reactor (MSFR) design was selected. This circulating fuel reactor has received interest from both scientific and industrial communities due to its intrinsic safety and sustainability. Molten salt flows in such reactors, however, can present highly localized temperature peaks that can induce significant thermal stresses onto the vessel walls. At these local maxima, the salt temperature may exceed a thousand kelvins, which makes a direct measurement challenging or even unfeasible. The proposed CNN algorithm allows one to detect indirectly such discontinuities through an accurate, albeit indirect, temperature measurement method during reactor operation. The datasets employed to train and test the machine learning models in the present work were generated with Nek5000, a computational fluid dynamics (CFD) code developed at Argonne National Laboratory. The CNN algorithm is trained with CFD results that span a set of MSFR operational power and flow ranges. Here, to demonstrate the efficacy of the algorithm, predictions are made for test cases contained within the training range but for which the CFD data were not used when training. Results demonstrate that the proposed technique properly characterizes temperature peaks and distributions within the domain for a broad range of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助zhouyin2采纳,获得10
刚刚
刚刚
1秒前
落后的寄文完成签到,获得积分10
1秒前
乐观渊思完成签到,获得积分10
1秒前
TRACEY完成签到,获得积分10
2秒前
ruohanyu发布了新的文献求助10
3秒前
现代化脑发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
LFYBing完成签到,获得积分10
3秒前
HPDDDP发布了新的文献求助10
3秒前
3秒前
婉妤发布了新的文献求助10
4秒前
foxbt完成签到,获得积分10
4秒前
Jin0717完成签到,获得积分10
4秒前
雨檬完成签到,获得积分10
4秒前
傲天完成签到,获得积分10
4秒前
科研通AI6应助hzy666采纳,获得10
4秒前
PAN完成签到,获得积分10
4秒前
纯情女大发布了新的文献求助10
4秒前
能干忆霜完成签到 ,获得积分10
5秒前
Sci完成签到,获得积分10
5秒前
5秒前
咪路完成签到,获得积分10
6秒前
6秒前
邵竺发布了新的文献求助10
6秒前
6秒前
yyyy发布了新的文献求助10
6秒前
跳跃毒娘发布了新的文献求助10
6秒前
沈澜关注了科研通微信公众号
7秒前
UAU发布了新的文献求助10
7秒前
ding应助林毅坤采纳,获得10
7秒前
7秒前
7秒前
7秒前
11111完成签到,获得积分20
7秒前
7秒前
鱼鱼完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098407
求助须知:如何正确求助?哪些是违规求助? 4310607
关于积分的说明 13431084
捐赠科研通 4137909
什么是DOI,文献DOI怎么找? 2266971
邀请新用户注册赠送积分活动 1270067
关于科研通互助平台的介绍 1206331