A Deep Neural Network–Based History-Matching Method for Deterministic Estimation of Heterogeneous Model Parameters

人工神经网络 计算机科学 匹配(统计) 估计 人工智能 数据挖掘 数学 统计 工程类 系统工程
作者
Billal Aslam,Yanhui Zhang,Ibrahim Hoteit,Bicheng Yan
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-21
标识
DOI:10.2118/220876-pa
摘要

Summary Reservoir model history matching is critical for understanding subsurface uncertainties in rock properties. However, traditional history-matching methods often require numerous forward model evaluations and are sensitive to the initial guess of uncertain model parameters, making the process computationally intensive and potentially unstable. To tackle these issues, we resort to deep learning (DL) technologies for their universal approximation capability in both forward and inverse modeling based on automatic differentiation. In this study, we develop a deep neural network–based history-matching (DNN-HM) workflow as a deterministic approach to enhance the accuracy and efficiency of history matching. The workflow couples two specialized networks: a DL-based forward surrogate model NNf for fast prediction of multiphase flow and an inference network NNg for history matching based on prior knowledge and the pretrained NNf. We assess the performance of the DNN-HM workflow on 2D and 3D two-phase waterflooding problems in heterogeneous reservoirs. After training, NNf accurately predicts well grid pressures pwg and saturation Sw. Starting from a homogeneous prior, NNg successfully infers a heterogeneous permeability field with low relative error and enables accurate forecasting of production rates (qwprod,sc, qoprod,sc), well bottomhole pressures pwfinj, and saturation plume propagation Sw. Sensitivity analysis shows that using longer observational periods improves history-matching accuracy, and the DNN-HM workflow demonstrates strong robustness to observational data noise. Compared to traditional gradient-based methods, DNN-HM achieves higher efficiency, offers transfer learning capabilities, and improves permeability estimation accuracy. Finally, the workflow is extended to 3D cases, demonstrating its scalability and applicability to realistic reservoir scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷迎梦发布了新的文献求助10
1秒前
CL完成签到,获得积分10
3秒前
HW发布了新的文献求助10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
chenqi应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
田子廉完成签到,获得积分10
4秒前
4秒前
4秒前
汉堡包应助yyi1采纳,获得100
6秒前
斯文发糕发布了新的文献求助10
6秒前
万嘉俊发布了新的文献求助20
7秒前
peaches完成签到,获得积分20
8秒前
11秒前
11秒前
慈祥的夏岚完成签到,获得积分10
11秒前
13秒前
27完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
skx发布了新的文献求助10
16秒前
贝拉完成签到,获得积分10
16秒前
17秒前
852应助万嘉俊采纳,获得10
18秒前
figure发布了新的文献求助10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898