Prioritization of potential drug targets in ovarian-related diseases: Mendelian randomization and colocalization analyses

孟德尔随机化 共域化 优先次序 药品 计算生物学 医学 生物 生物信息学 药理学 遗传学 神经科学 基因 遗传变异 工程类 管理科学 基因型
作者
Yanggang Hong
出处
期刊:F&S science [Elsevier]
标识
DOI:10.1016/j.xfss.2025.02.003
摘要

To identify key genes and potential drug targets for ovarian-related diseases through genome-wide Mendelian randomization (MR) and colocalization analyses. We conducted a comprehensive two-sample MR analysis to estimate the causal effects of blood expression quantitative trait loci (eQTLs) on ovarian-related diseases, followed by colocalization analyses to verify the robustness of the expression instrumental variables (IVs). Phenome-wide association studies (PheWAS) were also performed to evaluate the horizontal pleiotropy of potential drug targets and possible side effects. Publicly available genome-wide association study data. Large cohorts of European ancestry. The exposure in this study was the genetic variants (eQTLs) associated with gene expression levels, considered a form of lifelong exposure. eQTL data were obtained from the eQTLGen Consortium, encompassing 16,987 genes and 31,684 cis-eQTLs derived from blood samples of healthy individuals of European ancestry. The primary outcome measures were the identification of genes causally associated with ovarian-related diseases and the validation of these genes as potential therapeutic targets. Our study revealed that specific genes such as CD163L1, PPP3CA, MTAP, F12, NRM, BANK1, ZNF66, GNA15, and SLC6A9 were associated with ovarian endometriosis, ovarian cysts, and PCOS. Through MR and colocalization analyses, we identified potential drug targets, including CTNNB1, PTPN7, and ABCB4, with strong evidence of colocalization with ovarian-related diseases. Sensitivity analyses confirmed the robustness of our findings, showing no evidence of horizontal pleiotropy or heterogeneity. This research highlights the significance of precision medicine approaches in identifying genetic factors underlying ovarian-related diseases and provides a foundation for developing targeted therapies, enhancing diagnostic accuracy, and improving treatment strategies for ovarian-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zZ完成签到,获得积分20
刚刚
CipherSage应助刘伊馨采纳,获得10
刚刚
刚刚
Akim应助lanchong采纳,获得10
1秒前
1秒前
行者无疆发布了新的文献求助10
1秒前
2秒前
重要难摧完成签到,获得积分10
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
Orange应助科研通管家采纳,获得30
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
春国应助科研通管家采纳,获得10
3秒前
心脏杀手完成签到,获得积分20
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
欣喜电脑应助科研通管家采纳,获得10
3秒前
木头马尾给TTK的求助进行了留言
3秒前
rebeccahu发布了新的文献求助10
3秒前
田様应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
辰枫完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助bswxy采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588567
求助须知:如何正确求助?哪些是违规求助? 4003992
关于积分的说明 12396216
捐赠科研通 3680699
什么是DOI,文献DOI怎么找? 2028761
邀请新用户注册赠送积分活动 1062294
科研通“疑难数据库(出版商)”最低求助积分说明 948166