Research on Financial Risk Prediction and Management Models Based on Big Data Analysis

大数据 风险管理 业务 财务 风险分析(工程) 计算机科学 数据挖掘
作者
Caixia Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425406205
摘要

The increasing complexity and volatility of financial markets necessitate more advanced risk prediction and management techniques. Conventional financial risk models typically depend on linear assumptions and fixed statistical distributions, which constrain their capability to accurately reflect complex market behaviors. Recent advancements in big data analytics and deep learning provide new opportunities for more precise and adaptive risk assessment. This research introduces a novel framework for financial risk prediction that combines deep learning, probabilistic modeling, and reinforcement learning-driven risk management. Unlike conventional econometric models, our approach employs a risk-aware deep learning model (RDLM) to capture nonlinear dependencies among financial indicators while leveraging probabilistic estimation to quantify uncertainty in risk predictions. We introduce an adaptive risk mitigation strategy (ARMS), which dynamically adjusts risk exposure through reinforcement learning and market-responsive portfolio optimization. RDLM integrates deep neural networks with probabilistic risk estimation to enhance prediction accuracy and interpretability. By focusing on financial risk distributions instead of point estimates, this method effectively measures uncertainty, leading to more reliable risk evaluations. To enhance transparency and address critical regulatory issues, explainable AI methods like SHAP and LIME are utilized. ARMS leverages reinforcement learning and real-time data processing to dynamically refine investment strategies. The model includes market-regime detection. This allows it to adjust portfolio allocations as risk conditions change, ensuring adaptability in volatile environments. Experimental evaluations on real-world financial datasets demonstrate the effectiveness of our approach in enhancing risk prediction accuracy, minimizing financial losses, and optimizing risk-adjusted returns. The proposed framework combines big data analytics, deep learning, and adaptive risk management, providing a scalable and interpretable solution for financial stability and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ完成签到,获得积分20
1秒前
1秒前
ZYY发布了新的文献求助30
3秒前
Shirly发布了新的文献求助10
3秒前
ziyue发布了新的文献求助10
5秒前
饱满帽子完成签到,获得积分20
5秒前
adeline完成签到,获得积分20
6秒前
7秒前
xW12123完成签到,获得积分10
7秒前
希望天下0贩的0应助111版采纳,获得10
8秒前
夏宋发布了新的文献求助10
9秒前
Wind0240完成签到,获得积分10
9秒前
深味i完成签到,获得积分10
10秒前
miaomiao完成签到,获得积分10
10秒前
也许飞鸟能到那个木屋完成签到,获得积分10
11秒前
11秒前
orixero应助UU采纳,获得10
11秒前
11秒前
12秒前
12秒前
Fair完成签到,获得积分10
13秒前
14秒前
lizh187完成签到 ,获得积分10
14秒前
圈地自萌X发布了新的文献求助10
14秒前
脑洞疼应助申奎源采纳,获得10
14秒前
慕青应助ZYY采纳,获得10
14秒前
yjo完成签到,获得积分10
14秒前
青草蛋糕完成签到 ,获得积分10
16秒前
激昂的如柏完成签到,获得积分10
16秒前
漠北发布了新的文献求助10
16秒前
16秒前
16秒前
科目三应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
17秒前
无极微光应助科研通管家采纳,获得20
17秒前
浮游应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5683377
求助须知:如何正确求助?哪些是违规求助? 5030696
关于积分的说明 15181117
捐赠科研通 4842967
什么是DOI,文献DOI怎么找? 2596302
邀请新用户注册赠送积分活动 1549225
关于科研通互助平台的介绍 1507545