已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on Financial Risk Prediction and Management Models Based on Big Data Analysis

大数据 风险管理 业务 财务 风险分析(工程) 计算机科学 数据挖掘
作者
Caixia Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425406205
摘要

The increasing complexity and volatility of financial markets necessitate more advanced risk prediction and management techniques. Conventional financial risk models typically depend on linear assumptions and fixed statistical distributions, which constrain their capability to accurately reflect complex market behaviors. Recent advancements in big data analytics and deep learning provide new opportunities for more precise and adaptive risk assessment. This research introduces a novel framework for financial risk prediction that combines deep learning, probabilistic modeling, and reinforcement learning-driven risk management. Unlike conventional econometric models, our approach employs a risk-aware deep learning model (RDLM) to capture nonlinear dependencies among financial indicators while leveraging probabilistic estimation to quantify uncertainty in risk predictions. We introduce an adaptive risk mitigation strategy (ARMS), which dynamically adjusts risk exposure through reinforcement learning and market-responsive portfolio optimization. RDLM integrates deep neural networks with probabilistic risk estimation to enhance prediction accuracy and interpretability. By focusing on financial risk distributions instead of point estimates, this method effectively measures uncertainty, leading to more reliable risk evaluations. To enhance transparency and address critical regulatory issues, explainable AI methods like SHAP and LIME are utilized. ARMS leverages reinforcement learning and real-time data processing to dynamically refine investment strategies. The model includes market-regime detection. This allows it to adjust portfolio allocations as risk conditions change, ensuring adaptability in volatile environments. Experimental evaluations on real-world financial datasets demonstrate the effectiveness of our approach in enhancing risk prediction accuracy, minimizing financial losses, and optimizing risk-adjusted returns. The proposed framework combines big data analytics, deep learning, and adaptive risk management, providing a scalable and interpretable solution for financial stability and decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
王懒懒发布了新的文献求助10
1秒前
2秒前
大大怪完成签到 ,获得积分10
3秒前
3秒前
3秒前
tong完成签到 ,获得积分10
4秒前
Yyyang发布了新的文献求助10
5秒前
么么哒荼蘼酱完成签到,获得积分10
5秒前
6秒前
gxg发布了新的文献求助10
7秒前
顾白凡发布了新的文献求助50
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
桐桐应助lqy采纳,获得10
11秒前
zly发布了新的文献求助10
13秒前
14秒前
白蒲桃完成签到 ,获得积分10
18秒前
19秒前
bkagyin应助qq158014169采纳,获得10
20秒前
Akim应助gxg采纳,获得10
21秒前
Criminology34应助Human123采纳,获得10
21秒前
zhangrui完成签到,获得积分10
21秒前
22秒前
24秒前
JRALL完成签到,获得积分10
24秒前
JamesPei应助柠檬泡芙采纳,获得10
24秒前
大模型应助娇气的妙之采纳,获得10
24秒前
可爱的函函应助王懒懒采纳,获得10
24秒前
顾白凡完成签到,获得积分10
26秒前
juan发布了新的文献求助10
27秒前
27秒前
28秒前
29秒前
小满发布了新的文献求助10
29秒前
今天学习了吗完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312441
求助须知:如何正确求助?哪些是违规求助? 4456140
关于积分的说明 13865543
捐赠科研通 4344617
什么是DOI,文献DOI怎么找? 2385967
邀请新用户注册赠送积分活动 1380304
关于科研通互助平台的介绍 1348703